International Journal of Advanced Intelligence AA
International
Volume 1, Number 1, pp.59-88, November, 2009. .! | V Advanced

Information
© AIA International Advanced Information Institute Institute

New Similarity Scale to Measure
the Difference in Like Patterns with Noise

Michihiro Jinnai

Department of Electro-Mechanical Systems Engineering,
Kagawa National College of Technology
355 Chokushi-cho, Takamatsu, 761-8058, Japan
jinnai@t.kagawa-nct.ac.jp

Satoru Tsuge

Faculty of Engineering, University of Tokushima
2-1 Minami-josanjima, Tokushima, 770-8506, Japan
tsuge@is.tokushima-u.ac.jp

Shingo Kuroiwa

Department of Information and Image Science, Chiba University
1-33 Yayoi-cho Inage-ku, Chiba, 263-8522, Japan
kuroiwa@faculty.chiba-u.jp

Fuji Ren
Faculty of Engineering, University of Tokushima
2-1 Minami-josanjima, Tokushima, 770-8506, Japan
ren@is.tokushima-u.ac.jp

Minoru Fukumi

Faculty of Engineering, University of Tokushima
2-1 Minami-josanjima, Tokushima, 770-8506, Japan
fukumi@is.tokushima-u.ac.jp

Received (January 2009)
Revised (August 2009)

A new similarity scale called the Geometric Distance, that numerically evaluates the de-
gree of likeness between two patterns is proposed. Traditionally, the similarity scales
known as the Euclidean distance and cosine similarity have been widely used to measure
likeness. Traditional methods do not perform well in the presence of noise or pattern
distortions. In this paper, a new mathematical model for a similarity scale is proposed
which overcomes these limitations of the earlier models, while improving the overall recog-
nition accuracy. Experiments in speech vowel recognition were carried out under various
SNR levels in a variety of noisy environments. In all cases a significant improvement
in recognition accuracy is demonstrated, with the improvement most pronounced in the
noisiest conditions. In fact, at a SNR of 5 dB in a subway, the recognition accuracy
improved from 65% to 75% and at 20 dB SNR from 98.4% to 99.6% over the MFCC
method. Numerical modeling of simple patterns is used to demonstrate the principles
behind the Geometric Distance.
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1. Introduction

In pattern recognition, a known pattern stored in a PC memory is called as the
“standard pattern”, and a pattern to be compared is called the “input pattern”.
The degree of likeness between the standard pattern and the input pattern is eval-
uated using a similarity scale. If the similarity of the standard and input patterns
is close, then those two patterns are considered to be in the same category and
the input pattern is recognized. The similarity is often measured as a “distance”
between the two patterns.

Conventionally, the similarity scales known as the Euclidean distance and cosine
similarity have been widely used.!> Conventional similarity scales compare the
patterns using a one-to-one mapping. The result of the one-to-one mapping is
that, the distance metric is highly sensitive to noise, and the distance metric changes
in a staircase pattern when a difference occurs between peaks of the standard and
input patterns.

To improve the shortcomings, various techniques have been applied. For exam-
ple, in speech recognition, the Itakura-Saito distance measure,?** LLR,> WLR,%"
WSM,? and projection distance® have been proposed for the purpose of comparing
the shapes of the power spectra.l® Besides, in pattern classification or clustering
and image retrieval, many distance functions have been proposed for comparing
histograms.11:12:13,14,15

A similarity scale is a concept that should intuitively concur with the human
concept of similarity in hearing and sight. First we need to develop a mathematical
model for the similarity scale so that we can perform numerical processing by com-
puter. In this paper, a mathematical model of the similarity scale is proposed to
improve the shortcomings that are found in the Euclidean distance, cosine similarity
and others, and a new algorithm based on a one-to-many point mapping is proposed
to realize the mathematical model. Then, numerical experiments are carried out
using some geometric patterns, and the algorithm is confirmed to perform well.
Finally, some speech recognition tests are carried out using the proposed algorithm
with real voices. The effectiveness of the mathematical model and algorithm is
evaluated based on the result of speech recognition.

A mathematical model incorporating the following two characteristics is used.
<1> The distance metric must show good immunity to noise.
<2> The distance metric must increase monotonically when a difference increases
between peaks of the standard and input patterns.

The proposed similarity scale can be applied widely to pattern recognition such
as pattern classification or clustering and image retrieval using the distance between
histograms. This paper explains this technique using power spectrum patterns of
voice. The paper consists of the following sections. Section 2 describes the short-
comings that are found in the conventional similarity scales. Section 3 describes
the mathematical model and algorithm of the new similarity scale, describes nu-
merical experiments, and describes that the algorithm performs well. Section 4
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Fig. 1. Typical examples of standard and input patterns.

describes the speech recognition tests that have been carried out, and describes the
effectiveness of the mathematical model and algorithm. Section 5 provides the
conclusions and touches on future work.

2. Conventional Similarity Scale

In this paper, for example, for the power spectrum of voice, a random variation
of power spectrum caused by noise and air turbulence such as fricative sound is
defined as the “wobble”. Also, the difference between peaks of the power spectra
such as formant is defined as the “difference”.

Conventional similarity scales Euclidean distance and cosine similarity compare
the patterns using a one-to-one mapping. The result of the one-to-one mapping
is that, input patterns with different shapes may have the same distance from
the standard pattern when the power spectrum patterns have the “difference” and
“wobble”.

Fig. 1(a) gives an example of the “difference” where the standard pattern has
two peaks in the power spectrum, and input patterns 1, 2 and 3 have a different
position on the second peak. However, each pattern is assumed to have variable
7 in the relationship shown in Fig. 1(a). Therefore, the standard pattern and the
input patterns always have the same area. In this case, the Euclidean distance and
cosine similarity e;, e and ez have the relationship of e; = ey = e3 between the
standard pattern and each of input patterns 1, 2 and 3. Therefore, input patterns
1, 2 and 3 cannot be distinguished.

Fig. 1(b) gives an example of the “wobble” where the standard pattern has a
flat power spectrum, input patterns 4 and 5 have the “wobble” on the flat power
spectrum, and input pattern 6 has a single peak. However, each pattern is assumed
to have variable p in the relationship shown in Fig. 1(b). Therefore, the standard
pattern and the input patterns always have the same area. In this case, the
Euclidean distance and cosine similarity es4, e5 and eg have the relationship of
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e4 = e; = eg between the standard pattern and each of input patterns 4, 5 and 6.
Therefore, input patterns 4, 5 and 6 cannot be distinguished.

To deal with these shortcomings, the cepstrum is used as the feature parameter
in the speech recognition, for example.!® The cepstrum is a result of taking the
Inverse Fourier transform of the logarithmic power spectrum. In particular, the
Mel-Frequency Cepstrum Coefficient (MFCC),'” which is a combination of this cep-
strum and Mel filter bank, is used in many speech recognition systems.'® Although
this MFCC is the feature parameter that can absorb a certain level of “difference”
and “wobble” of the power spectrum, the remaining “difference” and “wobble” are
finally absorbed using statistical models and adaptation techniques.'?>2°
ficient attention has been paid to date to the role of the similarity scale in both
speech and non-speech sound recognition. Therefore, we propose a new similarity
scale that we will introduce in the next section.

Insuf-

3. New Similarity Scale

A new algorithm based on a one-to-many point mapping is proposed to realize
the mathematical model. The difference in shapes between standard and input
patterns is replaced by the shape change of a normal distribution, and the magnitude
of this shape change is numerically evaluated as a variable of the moment ratio
that is derived from the kurtosis. In this method, when a “difference” occurs
between peaks of the standard and input patterns with “wobble” due to noise
or similar occurrence, the “wobble” is absorbed and the distance metric increases
monotonically according to the increase of the “difference”. In the second half of
this section, numerical experiments are carried out using some geometric patterns
with the “difference” and “wobble”, and the proposed algorithm is confirmed to
perform well.

3.1. Normal distribution and kurtosis

In statistical analysis, the normal distribution shown in the following equation is
often used for models exhibiting many phenomena.

1 { 1 fu—p >
) = = e -5 (24 } )
oV22m 2 o

Where, p is mean, and o2 is variance. When the normal distribution is applied to
a model exhibiting phenomenon, it is important to check whether the phenomenon
meets the normal distribution or not. The kurtosis of a probability distribution is a
measure of its relative peakedness or flatness compared to the normal distribution.
A positive kurtosis indicates peakedness and a negative one, flatness relative to
the normal distribution with the same mean and variance. In Eq. (1), if the
continuous value u is replaced by discrete value wu;, kurtosis a can be calculated
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Fig. 2. Change of moment ratio A.

using the following equation.

{Zf(ui)}'{z:(ui — )t f(Ui)}

a= 5 -3 (2)
{Zwi — )’ f(u»}

i

If a probability distribution of the phenomenon follows the normal distribution,
then @ = 0. If it has peakedness relative to the normal distribution, then a > 0.
Adversely, if it has flatness relative to the normal distribution, then a < 0. Eq. (2)
shows a ratio of the forth moment to the square of second moment around mean
. When the proposed method is used, a shape change around the component
position needs to be detected based on the center of each component position of
the power spectrum as shown in Fig. 7 of Section 3.7. Therefore, we assume y = 0
and change Eq. (2) as follows.

{Z f(ui)}'{Z(Ui)4' f(ui)}
A=—"1 -3

i

{Dui)?- f(u»}

(3)

Eq. (3) shows a ratio of the forth moment to the square of second moment around
the origin. In this paper, Eq. (3) is called “Moment ratio A”.

Then, numerical experiments are carried out to study the relationship between
moment ratio A and the increment value § of bar graphs seen in Figs. 2 and 3.
Graphs in the upper side of Figs. 2(a)—(c) show the bar graphs each having m
bars whose height is the same as function value f(u;) of the normal distribution.
Note that m = 11 and the bar graphs are created by using the area of —2.10 <
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u; < 2.10 (0 = 1) of the normal distribution. On these bar graphs, only a single
bar increases by value § in the center, an intermediate position, and an end of the
normal distribution. Here, the moment ratio A is calculated using Eq. (3) for the
bar graph whose shape is changed as described above. The obtained relationship
between values A and ¢ is shown in the lower side of Figs. 2(a)—(c). For now we
only consider positive values of §. From these graphs, it is discovered that A = 0.0
if § = 0.0. Also, A changes approximately linearly when value § increases. Note
that if only a single bar increases by value ¢ in the graph with m bars, it is the
same as when only a single bar with an 1/m ratio increases by value §. If value m
changes (m is an odd numbered value), the gradient of moment ratio graphs in the
lower side of Figs. 2(a)—(c) changes by the same 1/m weight. This property holds
for all values of m and for any variance o2 of the normal distribution.

Figs. 3(a) and (b) show the change rate of A (g;, where a change of 6 occurs at
the i-th position) for a normal distribution and a single instance of §. Change rate
g; is described by the following equation.

gi=A/0 (1=1,2,3,---,m) (4)

The g(14m)/2, & and g,, are equal to the gradients of respective graphs shown in
the lower side of Figs. 2(a)—(c). Next, in Fig. 3(a), position i of the bar that has
increased by value ¢ is scanned from 1 to m, and Eq. (4) is calculated. Fig. 3(b)
shows a bar graph of the calculated value g;, where § = 0.2. From Fig. 3(b), g; > 0,
g; ~ 0 and g; < 0 are found in the center, an intermediate position, and an end of
the normal distribution.

The following summarizes the features of moment ratio A that have been ob-
tained from the above numerical experiments. Fig. 4 shows a normal curve f(u;)
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with mean g = 0 and variance 2, and the moment ratio becomes A = 0. Also, if
the value f(u;) exceeds the value of the normal curve in area « shown in Fig. 4, the
moment ratio becomes A > 0. If the value f(u;) increases in area 3, the moment
ratio becomes A < 0. If the value f(u;) increases in the boundary area between «
and S (close to area u; = £0.70), the change of A is small and it is A ~ 0. Mean-
while, if the value f(u;) increases in area 7, A is unstable as it becomes greater
than or less than 0. They have been summarized on Table 1. This paper uses area
—2.10 < wu; < 2.10 to obtain stable value A.

3.2. Creation of standard and input pattern vectors

An example of standard and input patterns, that have been created using the power
spectrum of standard and input voices, are given in Figs. 5(a) and (b). Note that
the power spectrum is generated from the output of filter bank with the m frequency
bands (where, m is an odd number). Also, we suppose that the i-th power spectrum
values (where, i = 1,2,--- ,m) of standard and input voices are divided by their
total energy and normalized power spectra s; and x; have been calculated. At this
moment, the standard and input patterns have the same area size. Here, we create
a standard pattern vector s having s; components, and an input pattern vector x
having z; components, and represent them as follows.

32(51;527"' »Si, ", Sm

mz(xlax27"'7mi7"'7xm)T (5)

Eq. (5) expresses the shapes of the power spectra of the standard voice and input
voice by the m pieces of component values of the pattern vector respectively. Note
that in this paper the width of each bar graph is 1/m for standard and input
patterns shown in Figs. 5(a) and (b).
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3.3. Creation of reference pattern vectors

With the proposed algorithm, the difference in shapes between standard and input
patterns is replaced by the shape change of the normal distribution, and the mag-
nitude of this shape change is numerically evaluated as a variable of the moment
ratio. However, in general, Eq. (3) cannot be defined if the value f(u;) is negative.
Therefore, we create a pair of reference patterns that have the initial shape of a
normal distribution so that the change of the value f(u;) does not decrease. Figs.
5(c) and (d) show the bar graphs, each having the same height as function values

riJr) and 7“57) of their normal distribution. Here, we create a positive reference
)

pattern vector 7 having r;
&)

P

components, and a negative reference pattern vector

O having r; ’ components, and represent them as follows.

T(+) = (T’£+),T'£+), e ’rz(+)7 e 7r£1_))T
rO =0 20 D T (6)

r® and r&) are equivalent vectors. Eq. (6) expresses the shape of a normal
distribution by the m pieces of component values of pattern vector respectively.
Note that the number of components of Eq. (6) is supposed to be equal to the
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number of components of Eq. (5), and all bar graphs of Figs. 5(a)—(d) have the
same width. Also, as shown in Figs. 5(c) and (d), the center axis of a normal
distribution assumes to locate at the center of standard and input patterns, and
Eq. (6) is created using area —2.10 < u; < 2.1 of the normal distribution. Note
that 0 =1/4.2 as 2.10 x 2 = (1/m) x m.

3.4. Shape changes of reference pattern vectors

A difference in shapes between standard pattern vector s and input pattern vector
x is replaced by the shape changes of positive reference pattern vector ™ and
negative reference pattern vector ) using the following equation.

For i:172737"'7m;
o if x; >s;, then rl(+) <—rl(+ + |z; — s
o if m; <s; then 7“2() £)+|$i_3i| (7)
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In Eq. (7), r§+) and rg_) on the right side show the component values of positive and
negative reference pattern vectors having the shape of the normal distribution, and
those on the left side show the components after the shape has changed. In Eq. (7),
if component value z; of the input pattern vector is greater than component value
s; of the standard pattern vector, component value r§+) of the positive reference
pattern vector increases by |z; — s;| from the normal distribution value. Also, if

x; is smaller than s;, component value 7"2(_) of the negative reference pattern vector
)

increases by |z; — s;| from the normal distribution value. Thus, the values ;" and

Z(_) do not decrease in Eq. (7). Fig. 6 shows the shape of Eq. (7). However, )
is shown upside down in order to compare it with . Next, we explain Eq. (7)
using Fig. 6.

e Fig. 6(a) gives an example of the case where standard pattern and input pattern
have the same shape. Because values r§+) E_) of Eq. (7) do not change during
this time, a pair of the reference patterns shown in Fig. 6(a) do not change in their
shapes from the normal distribution.

e Figs. 6(b)—(d) respectively show an example exhibiting a small, medium, and
large “difference” of peaks between the standard and input patterns. If Eq. (7) is

represented by the shapes, as shown in Figs. 6(b)—(d), value ) increases at peak

r

and r

position ¢ of each standard pattern. At the same time, value ri+ increases at peak
position i of each input pattern.

e Fig. 6(e) typically shows the standard pattern having a flat shape and an input
pattern where a “wobble” occurs in the flat shape. Because values r£+) Z(_)
increase alternatively in Eq. (7) during this time, a pair of reference patterns shown
in Fig. 6(e) have small shape changes from the normal distribution.

and r

3.5. Moment ratios of reference pattern vectors

For the positive and negative reference pattern vectors whose shapes have changed
by Eq. (7), the magnitude of shape change is numerically evaluated as the variable
of moment ratio. The moment ratios of the positive and negative reference pattern
vectors can be calculated using the following equation that has been modified from

Eq. (3).
{irz(+)}'{i(Li)4' TZ(+)}
AP = L=l i=1 - _3
{Z(Li)2' T§+)}
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Where, L; (i = 1,2,---,m) is a deviation from the center axis of the normal
distribution shown in Figs. 5(c) and (d).

3.6. Calculation of shape variation

The initial value of the moment ratio of both positive and negative reference pattern
vectors is equal to 0. Therefore, the amount of change of moment ratio in positive
direction is A®, and the amount of change in negative direction is A®). The total
amount of change is the difference between them. Thus, the difference in shapes
between standard and input patterns is calculated using the following equation, and
it is defined as “Shape variation D”.

D= A®D _ A0 (9)

Fig. 6 and Table 2 show how D varies with (", (7 A® and 4.
e In (a), values r£+) and T'E*) do not change. The shape variation becomes D = 0
as A® =0 and A =0.

e In (b)—(d), because peak position i of the standard pattern locates in area « shown
in Fig. 4, the moment ratio becomes A© > 0 when value T'E*) increases.

e In (b), because peak position i of the input pattern also locates in area «, the
+

moment ratio becomes A® > 0 when value 7" increases. The entire shape varia-
tion becomes D = 0.

e In (c), because peak position ¢ of the input pattern locates in the boundary area
between a and £, the moment ratio becomes A® = 0 even when value r£+)
creases. The entire shape variation becomes D < 0.

e In (d), because peak position 7 of the input pattern locates in area 3, the moment
ratio becomes A® < 0 when value r£+) increases. The entire shape variation be-
comes D < 0.

e In (e), a pair of reference patterns have small shape changes from the normal
distribution, and the shape variation becomes D ~ 0 as A® ~ 0 and A0 = 0.
Also, if values r£+) E_) increase randomly, the shape variation becomes D = 0.
In Fig. 3 (b), the bar graph of the change rate of moment ratio A decreases mono-
tonically from the center to the outer end. From this result and from above (a)—(d),
we can understand that value |D| increases monotonically according to the increase
of the “difference” between peaks of the standard and input patterns. Also, from

(e), it is clear that D = 0 for the “wobble”.

in-

and r

3.7. Movement of normal distribution

In the previous section, we have determined the shape variation D by assuming
that the center axis of the normal distribution locates at the center of standard and
input patterns as shown in Figs. 5 and 6. In this section, however, we determine
the amount of shape variation D; for each j in the case where the center axis of the
normal distribution moves to any component position j (where, j =1,2,---,m) of
the standard and input patterns.



70 M. Jinnai, S. Tsuge, S. Kuroiwa, F. Ren, M. Fukumi

Sj Standard pattern
(a) T
123  j m i
X Input pattern
(b) T 7]

(@)
i

T T Reference pattern

(C) vﬁ“ﬁ"ﬂ’ﬂ’ m
w1 ‘ I =>Dq
1 ny
l—Z.l o4 | |~ 2.104

i
(6]
r3i
[T Reference pattern
(d) Y
TS I >D3
\ b
1 n3
210 210
© 3 ] 3
r3i —
© i
I—Jl 7 Reference pattern
«© 4*{7[( xhﬁ
: i >D i
{\{\L J 7}2’&
1 nj
© LAy
r_jl -21 0j 2.1 0j
™) T4
Fmi Reference pattern
® T ] ] m
i
% m -> Dm
T |
1 Nm
. 210, — 210,

mi
Fig. 7. Movement of normal distribution.

Figs. 7(a) and (b) give an example of standard and input patterns. Also, Figs.
7(c)—(f) show the positive and negative reference patterns when the center axis
of the normal distribution moves to positions 1, 3, j and m, respectively. Note
that all bar graphs of Figs. 7(a)—(f) have the same width. Here, as shown in
Figs. 7(c)—(f), we create positive and negative reference patterns for each j so that
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bar graphs 1 to n; of positive and negative reference patterns correspond to area
—2.10; < u; < 2.10; of the normal distribution. Where, 0; = n;/(4.2m) because
2.10; x2 = (1/m) xn;. Asshown in Fig. 7(e), the positive and negative reference
patterns do not necessarily cover the entire standard and input patterns.

Then, we process the ends so that the sensitivity to the “wobble” in the positive
and negative reference patterns is equated regardless of the movement position of
the normal distribution. In the positive and negative reference patterns shown in
Figs. 7(c)—(f), the “white” bar graph corresponds to the component numbers i of
the input pattern and, therefore, its value changes according to the “wobble” of the
input pattern. However, the “gray” bar graph does not correspond to it and its
value does not change. Therefore, we set value n; so that the number of white
bar graphs is equated in all the positive and negative reference patterns. In Figs.
7(c)—(f), for an example, each positive and negative reference patterns consists of 9
white bar graphs. By this means, the sensitivity to the “wobble” in the positive
and negative reference patterns is equated.

In the proposed algorithm, the values n; and o; must be set appropriately to
the pattern recognition application. In Section 4.3, an example method to set
these values is given. We can expand Eq. (6) as described above, create positive
and negative reference pattern vectors 7_g+) and rgf) which have different variance
values of the normal distribution for each movement position j, and represent them
as follows.

’I"§+) = (7"5'—’1_):7"5'42_)7 e 77“]'—’];)’ e arj(':)j)T
7“5'_) = (7“,(';),7“;), T ,7“](.;), T >T§;)]-)T (10)

(j:172737"' ’m)

Then, we replace the difference in shapes between standard pattern vector s and
input pattern vector & into the shape changes of the vectors P

; and rgf) by using
the following equation instead of Eq. (7).

For 1=1,2,3,---,m;
when k=i—j+(14+n;)/2 (where,1<k<n;);

o if x; > s; then ry,? — ry,? + |z; — s

oif z; < si, then r\}) «— rl) + |z — s (11)
(.] = 172737"' ’m)
Note that (14 n;)/2 is the center component number of r?r) and 1"57), and ¢ — j is

a deviation from the center component number. Also, if value k does not satisfy
1 <k < nj, we assume that values rj(.:) and rj(.;) do not change. Fig. 7 represents
the shape of Eq. (11), and it shows the example of the increase of values 7“5.',’;)

rj(.;). Then, the magnitude of the shape change of rgf) and rg.f)

and

is numerically
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) )

evaluated as the variable of moment ratio. The moment ratio of r;”” and r;’ can
be calculated by using the following equation instead of Eq. (8).
{z rﬁ?} - {zww- rgﬂ,?}
H_ k=1 k=1
AN= py 5 -3
{Z(ij)Z : T'J(-:)}
k=1
{Z rﬁ?} : {Z(LM)‘*- rﬁ?}
A= 2= k=l -3 (12)

{i<ﬂjk>2-rﬁ‘)}

k=1
(.7 :172>37"' 7m)

Note that value Lj; is a deviation from the center axis of the normal distribu-
tion that corresponds to position j. At this time, the shape variation D; can be
calculated by using the following equation instead of Eq. (9).

D; =AY — 4D (Gj=1,2,3,--,m) (13)

As shown in Figs. 7(c)—(f), the value D; is calculated from the respective positive
and negative reference patterns for each position j. Thus, if all positive and negative
reference patterns cover the peaks of standard and input patterns, all values |D;|
increase monotonically according to the increase of the “difference” between peaks
of the standard and input patterns as described in Section 3.6. Also, because the
number of white bar graphs has been equated in the positive and negative reference
patterns, the shape variation equally becomes D; ~ 0 for the “wobble”.

3.8. Calculation of geometric distance

Using the m pieces of the shape variation D; that we have obtained in Eq. (13), we
can calculate the difference in shapes between standard and input patterns by the
following equation and we define it as the “Geometric distance d”.

(14)

As described above, the geometric distance can be calculated by using Eqgs. (5) and
(10)—(14) sequentially. Note that d is the square root of a square sum of the m
pieces of values D;. Thus, as described in the previous section, d also increases
monotonically if all values |D;| increase monotonically according to the increase of
the “difference” between peaks of the standard and input patterns. Also, if the
shape variation equally becomes D; ~ 0 for the “wobble”, the geometric distance
also becomes d ~ 0.
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Fig. 8. Calculation in geometric distance.

3.9. Numerical experiments of geometric distance

To confirm that the geometric distance algorithm matches the mathematical model
that we have assumed in Section 1, we performed numerical experiments to calculate
the geometric distances of the standard and input patterns shown in Fig. 1. How-
ever, we have developed Eq. (10) by using values n; = 27 (6; = n;/(4.2m) = 0.58)
that are fixed regardless of movement position value j. During this time, the
number of white bar graphs of positive and negative reference patterns is 11 for all
j values. Note that we read Euclidean distances e; to es in Fig. 1 as geometric
distances d; to dg respectively.

Fig. 8(a) shows the calculation result of geometric distances dy, dy and ds by
increasing value 7 from 0.0 to 1.0 in Fig. 1(a). From Fig. 8(a), if value 7 is fixed,
we can determine that the geometric distance increases monotonically according
to the increase of the “difference” of the input pattern peak. Fig. 8(b) shows the
calculation result of geometric distances d4, ds and dg by increasing value p from 0.0
to 1.0 in Fig. 1(b). In Fig. 8(b), if value p is fixed, values d4 and d5 are smaller than
value dg. That is, if input patterns 4, 5 and 6 have the same area, input patterns
4 and 5 have the energy that is distributed to multiple peaks as the “wobble” when
compared with input pattern 6 that has the energy concentrated on a single peak.
Thus, the geometric distance of input patterns 4 and 5 is smaller than that of input
pattern 6. As a result, it is discovered that the change of geometric distance to
the “wobble” is small.

Moreover, Fig. 9 shows input patterns 1, 2 and 3 of Fig. 1(a) where uniformly
distributed random numbers are added to the power spectrum of all frequency
bands, and they are normalized so that the area of each input pattern becomes
equal to the area of standard pattern. However, as uniformly distributed random
numbers, the values that uniformly distribute within the range of 0 to 10% of average
height 1 of the standard pattern are used regardless of value 7. Fig. 9 is developed
by assuming that 7 = 0.5. Fig. 10 shows that effect on geometric distances d;, d
and ds of increasing value 7 from 0.0 to 1.0 in Fig. 9. Note that we have set to
change the random number if value 7 changes. From Fig. 10, if value 7 is fixed
within the range of 0.5 <7, it is discovered that the geometric distance increases
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monotonically according to the increase of the “difference” of the input pattern
peak in the “wobble” due to random numbers. From the numerical experiments
shown in Figs. 8(a), (b) and Fig. 10, we could verify that the geometric distance
algorithm matches the characteristics <1> and <2> of the mathematical model.

3.10. Calculation of median

Fig. 11 shows a typical example of 5 shapes, each having a different position on the
second peak. We assume that the geometric distance between shape i and shape
J is d;;, determine the value d;; between shape ¢ and other 4 shapes j respectively,
and calculate mean value d; using the following equation.

d; = (Y di) /4 (15)
J
(1=1,2,3,4,5; j = 1,2,3,4,5; i # j)

Note that we have developed Eq. (10) under the conditions described in Section
3.9.
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In Fig. 11, because shape 1 has a larger “difference” of the second peak when
compared with shapes 4 and 5, we can estimate that mean value d; of the geo-
metric distance becomes a large value. Meanwhile, because shape 3 has a smaller
“difference” of the second peak when compared with the other 4 shapes, we can
estimate that mean value d3 becomes a small value. Therefore, we determined
shape 4, that has the minimum mean value d; of the geometric distance, to be the
median. Fig. 11 shows the values d; to ds that have been calculated by numerical
experiments. From these values, it is discovered that values d; and ds are large,
but value ds is minimal. Therefore, we have determined shape 3 to be the median.
The result of numerical experiment of Fig. 11 matches the characteristic <2> of
the mathematical model.

4. Experiments of Vowel Recognition

To check the effectiveness of mathematical model and geometric distance algorithm
described in the previous section, we have performed the speech recognition experi-
ments using the geometric distance algorithm and actual voices. We used Japanese
speech produced by one female speaker in the experiments. We performed the ex-
periments in the following two stages.

(Stage 1) First, we optimized the variance of the normal distribution using the
“yowel in the continuous speech” that is different from the voice data for the eval-
uation experiments.

(Stage 2) Next, we performed the evaluation experiments for the “clean vowel” and
the “vowel with noise” by using the optimized normal distribution.

Note that, in this section, a vowel without noise is called the “clean vowel”. Also,
Stage 1 and Stage 2 are, respectively, divided into Substages Stage 1A, Stage 1B
and Stage 1C and Substages Stage 2A, Stage 2B and Stage 2C which are described
in the following sections.
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4.1. Voice data

(Stage 1A) First, we recorded the continuous speech (phonetically-balanced sen-
tences) of the subject female in a soundproof room and created speech data.
(Stage 2A) Next, we recorded each vowel (/a/, /i/, /u/, /e/, /o/) produced by the
same speaker in the soundproof room for a period of 2 seconds for each vowel. We
repeated this recording 6 times on one day each week over a period of 12 weeks,
and we created voice data of the 72 resultant sounds for each vowel (the vowels
produced 6 times over 12 weeks). These 5 vowels in 72 voice data sounds are
called “/a/01Clean”, “/i/01Clean”, “/u/01Clean”,- --,“/e/72Clean”,*/o/72Clean”
for each sound, according to the time sequence of the sounds. Then, Babble, Car,
Exhibition, and Subway noises?' have been added with the 20 dB, 10 dB and 5 dB
SNR, and the voice data of “5 vowels x 72 sounds x 4 noises x3 SNRs” has been
created. These voice data are also similarly referred to as “/a/01Babble20dB” to
“/o/72Subway5dB”.

4.2. Feature parameters

We have set the voice analysis conditions with the 8kHz sampling frequency, 16bit
quantization, 25msec frame width (Hamming window), 10msec frame period, 0.97
pre-emphasis coefficient, 64Hz start frequency of the first filter bank, and 4000Hz
end frequency of the 23-rd filter bank.

(Stage 1B) First, we sampled the vowel zone from the continuous speech data of
Stage 1A, and extracted the logarithmic power spectrum array of the 23-rd dimen-
sional Mel filter bank output (abbreviated as “power spectrum” hereafter).??  We
repeated them and finally extracted the power spectra of a total of 168 frames for
each vowel. The power spectra of these “5 vowels x 168 frames” are the feature
parameters that have been extracted from the “vowel in the continuous speech”.
(Stage 2B) Next, we sampled the central 100 frames from “5 vowels x 72 sounds”
for “/a/01Clean” to “/o/72Clean” voice data and from “5 vowels x 72 sounds x 4
noises x 3 SNRs” for “/a/01Babble20dB” to “/o/72Subway5dB” voice data, and
extracted their power spectrum. The power spectra of these “5 vowels x 72 sounds
x 13 types x 100 frames” are the feature parameters that have been extracted from
the “clean vowel” and the “vowel with noise”.

At the same time, we extracted the 12-th dimensional MFCC?? under the same
conditions as those for Stage 2B in order to compare our proposed technique with
the conventional technique. The MFCCs of these “5 vowels x 72 sounds x 13
types x 100 frames” are the feature parameters that have been extracted from the
”clean vowel” and the “vowel with noise”.

Fig. 12 gives an example of the 23-rd dimensional power spectrum that has been
extracted from the “clean vowel /a/”. The power spectrum of Fig. 12 has m = 23
in Eq. (5), and the standard and input patterns are created based on this value.
Note that Fig. 12 is referred to as the “l-frame power spectrum” in this paper.
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Fig. 12. 23-rd dimensional power spectrum of vowel /a/.

4.3. Variance optimization of normal distribution

(Stage 1C) For vowel recognition, it is important to be able to accurately detect
a “difference” between the formants of the standard and input patterns. The
proposed technique replaces the amount of “difference” between the formants by
the shape change of normal distribution and detects it. In such a case, it is
important to optimize the shape (variance 02) of normal distribution that covers
the standard and input patterns. Therefore, we show the optimization procedure
in Subsections 4.3.1 and 4.3.2.

4.3.1. Subdivision of reference pattern

In the previous section, as shown in Fig. 7, we have determined the geometric
distance by assuming that all bar graphs of the standard and input patterns and
those of the positive and negative reference patterns have the same width. In this
case, because 0; = n;/(4.2m) in Fig. 7(e), if the value n; is changed for each 2, the
value o; changes as a discrete value for each 1/(2.1m). Thus, if value m is small,
the accuracy of optimum value o; drops. In order to improve the accuracy, we
subdivide the bar graph of the positive and negative reference patterns.

Figs. 13(a) and (b) show a typical example of bar graph of the standard and
input patterns consisting of the 23 bars. Figs. 13(c) and (d) show the positive
and negative reference patterns when the center axis of normal distribution moves
to positions 3 and j, respectively. Here, as shown in Fig. 13, for example, we
use a single-bar graph of the standard and input patterns and we subdivide the
positive and negative reference patterns into the 10-bar graph. Then, as shown
in Figs. 13(c) and (d), each of the positive and negative reference pattern (where,
j=1,2,---,23) is configured by the same number of bars of the white bar graph.
In Figs. 13(c) and (d), for example, the bar graph is structured with 20.2 bars
(where, w = 20.2). This w is the number of white bar graphs of the positive and
negative reference patterns. In Fig. 13 (d), the relationship of w = n;/10 and
o; = w/(4.2m) = n;/10/(4.2m) (where, m = 23) is established. =~ Thus, if the
value n; is changed for each 2, the value o; changes as a discrete value for each
0.1/(2.1m). The accuracy of the optimum value o; is improved.
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4.3.2. Optimization of o

Fig. 14, Fig. 15 and Table 3 show the processing procedure to determine the op-
timum value of o (the optimum value of w) using the “vowel in the continuous
speech”. Fig. 14 is a flowchart used to determine the optimum value by scanning
value w in the range of 3.0 to 23.0. In Step 1 of Fig. 14, w = 3.0 is set as the
initial value. In Step 2, the positive and negative reference pattern vectors that
are equivalent to those of Fig. 13 are created according to the w set value. Then,
we explain Steps 3—7 by referring to Fig. 15 and Table 3. Table 3 shows the type
and the number of the 23-rd dimensional power spectrum that has been used for
the standard and input patterns. The power spectra, each consisting of 168 frames
shown on the first row of Table 3, have been extracted from the “vowel in the con-
tinuous speech” in Stage 1B of Section 4.2. 1In Step 3, a single standard pattern
is calculated for each vowel. Step 3 of Fig. 15 shows the process required to de-
termine the median from the above 168 frames using the technique of Section 3.10,
and to set the standard pattern of each vowel. The power spectra, each consisting
of one frame shown on the second row of Table 3, are the standard patterns that
have been determined for each vowel. The power spectra, each consisting of 167
frames shown on the third row of Table 3, are the patterns of the above 168 frames
from which each standard pattern has been removed. These “167x5” frames are
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Fig. 14. Flowchart for optimizing normal distribution.

the input patterns. In Step 4, N = 1 is set as the initial value and, as shown in
Step 4 of Fig. 15, the first input pattern is specified from the “167x5” frames. In
Step 5, the geometric distance is calculated and the input pattern is recognized.
As shown in Step 5 of Fig. 15, the geometric distance between the standard and
input patterns is calculated for each of the 5 vowels, and the minimum value is
determined among the 5 geometric distance values obtained. Then, the category
to which the standard pattern having the minimum value belongs is selected as the
recognition result of the input pattern. In Steps 6 and 7, value NV is incremented
by 1, the N-th input pattern is specified among the “167x5” frames, and Step 5 is
repeated. After the recognition result of all input patterns has been obtained, in
Step 8, the recognition accuracy is calculated by setting the total “167x5” frames as
the denominator and by setting the number of correctly recognized input patterns
as the numerator. In Steps 9 and 10, value w is incremented by 0.2 until it reaches
23.0, and the process of Steps 2-8 is repeated.
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Table 3. Power spectra for optimizing normal distribution.
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Standard pattern 1

(Step 5) Geometric dlst;&\ //

(Step 4, 6, 7) Input pattern 1

167 X5
Fig. 15. Diagram for optimizing normal distribution.

Fig. 18 shows the relationship between the value w and the recognition accuracy
obtained by the above process. From Fig. 18, it is discovered that the recognition
accuracy becomes maximum if w = 10.2. Thus, we determine w = 10.2 as the
optimum value and use it in the following evaluation experiments.

4.4. Fvaluation experiments
4.4.1. Vowel recognition with geometric distance

(Stage 2C) We have performed the evaluation experiments for the “clean vowel”
and the “vowel with noise” by using the value w = 10.2 determined in the previous
section. Fig. 16, Fig. 17 and Table 4 show the procedure. Table 4 shows the
type and the number of the 23-rd dimensional power spectrum that has been used
for the standard and input patterns. The power spectra, each consisting of 100
frames shown on the first row of Table 4, have been extracted from “01Clean” of
each vowel in Stage 2B of Section 4.2. “01Clean” is the first “clean vowel” that
was produced among 72 sounds in 12 weeks. Then, as shown in Step 3 of Fig.
17, the median was determined from the above 100 frames and it was used as the
standard pattern of each vowel. The power spectra, each consisting of one frame
shown on the second row of Table 4, are the standard patterns that have been
determined for each vowel. Also, the power spectra, each consisting of 100 frames
shown in {1} to {13} of Table 4, have been extracted from the “clean vowel” and
the “vowel with noise” in Stage 2B of Section 4.2. Then, the power spectra of
these “13x71x100x5” frames were used as the input patterns. Figs. 16 and 17
show the procedure for evaluation, by using both 5 standard patterns obtained from
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the “01Clean” and 71x100x5-frame input patterns shown in {13} of Table 4. A
similar process is also carried out if the 71x100x5-frame input patterns shown in
{1} to {12} are used. In Steps 2-8 of Fig. 16 and Steps 3-7 of Fig. 17, the same
process is executed as those of Figs. 14 and 15. Then, the recognition accuracy
is calculated by setting the total “71x100x5” frames as the denominator and by
setting the number of correctly recognized input patterns as the numerator.

4.4.2. Vowel recognition with MFCC

To compare the proposed technique with the conventional techniques, we performed
the evaluation experiments of vowel recognition using the 12-th dimensional MFCC.
The MFCC was extracted from the “clean vowel” and the “vowel with noise” in
Section 4.2, and its type and number are the same as those shown on Table 4.
First, we determined the mean and variance in each dimension using the 12-th
dimensional MFCCs of 100 frames in “01Clean”, and created the 12-th dimensional
normal distribution. We created this 12-th dimensional normal distribution for each
vowel, and used it as the standard pattern of each vowel. Then, we used the 12-th
dimensional MFCCs of 13x71x100x5 frames shown in {1} to {13} as the input
patterns. We calculated the likelihood between the input pattern and the standard
pattern of each vowel, and determined that the category of the input pattern is equal
to the category of the standard pattern having the maximum likelihood among 5
standard patterns.
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Table 4. Power spectra for vowel recognition.

Jof il Jo]_Je] o]
01 Clean 100 100 100 100 100
Standard pattern 1 1 1 1 1
02 Clean 100 100 100 100 100
{1} | : Input pattern : : : : :
72 Clean 100 100 100 100 100
02 Babble 20dB 100 100 100 100 100
{2} : Input pattern : : : : :
72 Babble 20dB 100 100 100 100 100
02 Subway 5dB 100 100 100 100 100
{13} | : Input pattern : : : : :
72 Subway 5dB 100 100 100 100 100

lfal 1il [ul /el ol
01 Clean 100 100 100 100 100

(Step 3) Median l l l l l
Standard pattern 1

(Step 5) Geometric d1stN //

(Step 4, 6, 7) Input pattern 1

{13} 02-72 Subway 5dB 71X100X5

Fig. 17. Diagram for vowel recognition.

4.5. Results of evaluation experiments

Tables 5 and 6 show the results of vowel recognition using the geometric distance and
MFCC, respectively. From these tables, it is learned that the recognition accuracy
with the geometric distance is higher than that with the MFCC in all cases. In
particular, “mean” of 10 dB and 5 dB SNR has improved approximately by 10%.
For both Tables 5 and 6, the recognition accuracy of “Exhibition5dB” is low. This
reason may be the insertion of a background male voice in the “Exhibition”. Thus
we confirm the effectiveness of the mathematical model and the geometric distance
algorithm.
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Table 5. Vowel recognition accuracy with geometric distance. (w = 10.2)

Babble Car Exhibition Subway  Mean

Clean 99.99%
SNR 20 dB | 99.90% 99.82%  99.00% 99.56% 99.57%
SNR 10 dB | 99.26% 97.72%  83.80% 90.66% 92.86%
SNR 5dB| 94.14% 81.69%  61.42% 74.89%  78.04%

Table 6. Vowel recognition accuracy with MFCC.

Babble Car  Exhibition Subway Mean

Clean 99.54%
SNR 20 dB | 98.83% 97.55% 96.57% 98.43% 97.84%
SNR 10 dB | 91.05% 80.92% 78.23% 83.57%  83.44%
SNR 5 dB | 78.62% 68.10% 60.84% 64.67% 68.06%

4.6. Verification of optimum value

Table 5 shows the result of recognition accuracy using the optimum value w = 10.2
that we have determined from Fig. 18. Here, in order to verify that the value
w = 10.2 is truly the optimum value, we have scanned the value w from 3.0 to
23.0 in Fig. 16 and calculated the recognition accuracy. Figs. 19 and 20 show the
calculated relationship between the value w and the recognition accuracy for the
input patterns of the “clean vowel” and the “vowel with 5 dB noise”, respectively.
From Figs. 19 and 20, we can find that the recognition accuracy is almost maximum
in the value w = 10.2.

4.7. The reason why “vowel in continuous speech” was used for
optimization

In Subsection 4.3.2, we determine the optimum value w using 168 frames of each
“vowel in the continuous speech” shown on the first row of Table 3. While in
Subsection 4.4.1, we determine the standard pattern using 100 frames of each vowel
of “01Clean” shown on the first row of Table 4. This section describes the reason
why we have used the “vowel in the continuous speech”.

Fig. 19 shows the relationship between the value w and the recognition accuracy
obtained from the “Clean” input patterns. These voice data have the variability
with time of 12 weeks. In Fig. 19, the recognition accuracy is 100% in part of the w
value range. From the results of vowel recognition experiments, we have found that
the recognition accuracy reaches 100% in the relatively wide w value range in the
variability with time below 4 weeks. In such a case, we have a problem determining
the maximum position of recognition accuracy. This means that we will find it
difficult to determine the optimum value of w by using the voices with few variations
produced in a short period. Meanwhile, if the “vowel in the continuous speech”
is used, the power spectrum of the vowel changes appropriately even if the voices



84 M. Jinnai, S. Tsuge, S. Kuroiwa, F. Ren, M. Fukumi

85% Vowel in continuous speech
>
)
®
1S
5
o
0
Q 5%
°
2
o
>

65%

3.0 10.2 w 23.0

Fig. 18. Vowel recognition accuracy and optimum value w.

100%
Clean
>
)
®
.
5
o
)
s L
o
3
o
>
99%
30 102 w 230

Fig. 19. Vowel recognition accuracy with geometric distance.

100%
Babble 5dB
>
0
«
1S
]
0
S 50% L
° -
2 Exhibition 5dB
0
>
0%
3.0 10.2 w 23.0

Fig. 20. Vowel recognition accuracy with geometric distance.

are produced in a short period. Therefore, the maximum position of recognition
accuracy is most obvious as shown in Fig. 18. Thus we use the “vowel in the
continuous speech” to determine the optimum value of w.
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5. Conclusions and Future Work

We have proposed a new similarity scale that replaces the difference in shapes be-
tween the standard and input patterns by the shape change of a normal distribution,
and that numerically evaluates the magnitude of the shape change as a variable of
the moment ratio. At this time, if the number of bar graphs of the standard
and input patterns is limited in the actual application of pattern recognition, we
have shown that we can avoid the reduced accuracy by subdivision of bar graphs
of positive and negative reference patterns. We have performed the vowel recogni-
tion experiments and verified the effectiveness of the mathematical model and the
geometric distance algorithm.

Finally, we describe future work. This paper describes the vowel recognition
experiments that we have carried out using only the vowels produced by one female
speaker. We will continue the vowel recognition experiments using various types
of voice data and will verify their effectiveness by evaluating the applicable range
of mathematical model and algorithm.

We need to calculate Egs. (11)—(14) in each combination of standard and input
patterns if we use multiple standard patterns and a single input pattern. Hence
the processing overhead increases when the number of standard patterns increases.
Additionally we need to evaluate Eq. (10) for each position j of the normal distribu-
tion. Therefore, memory increases in proportion to the square of the m components
of the standard and input patterns. These overheads will be addressed in future
studies.

Acknowledgments

This research has been partially supported by New Energy and Industrial Technol-
ogy Development Organization (NEDO) of the Japanese Government under Grant
No. 10HC7011, by Queensland Parks and Wildlife Service of the Australian Gov-
ernment under Coxen’s Fig-parrot Recovery Plan, and funded by Mitsubishi Heavy
Industries, Ltd. of Japan and Tokyo Gas Co., Ltd. of Japan, by West Nippon Ex-
pressway Engineering Shikoku Company Limited of Japan.

References

1. R.O. Duda, P.E. Hart and D.G. Stork. Pattern Classification, second ed., Wiley, NewYork,
2000.

2. K.K. Paliwal. Effect of preemphasis on vowel recognition performance, Speech Communica-
tion, 3, pp. 101-106, 1984.

3. L.R. Rabiner and B.H. Juang. Fundamentals of Speech Recognition, Prentice Hall, Englewood
Cliffs, New Jersey, 1993.

4. F.Itakura and S. Saito. An analysis-synthesis telephony based on maximum likelihood method,
Proc. 6th Int. Congr. Acoustics, C-5-5, 1968.

5. F. Itakura. Minimum prediction residual principle applied to speech recognition, IEEE Trans.
Acoust., Speech and Signal Processing, 23, pp. 67-72, 1975.

6. S. Furui. Digital Speech Processing, Synthesis, and Recognition (Electrical and Computer
Engineering), Marcel Dekker, Inc., NewYork, 1989.



86 M. Jinnai, S. Tsuge, S. Kuroiwa, F. Ren, M. Fukumi

7. K. Shikano and M. Sugiyama. Evaluation of LPC spectral matching measures for spoken word
recognition, Trans. IECE, 565-D, 5, pp. 535-541 1982.

8. D. Klatt. Prediction of perceived phonetic distance from critical band spectra: A first step,
Proc. ICASSP 82, 2, pp. 1278-1281, 1982.

9. D. Mansour and B.H. Juang. A family of distortion measures based upon projection operation
for robust speech recognition, IEEE Trans. Acoustics, Speech and Signal Processing, ASSP-37,
11, pp. 1659-1671, 1989.

10. N. Nocerino, F.K. Soong, L.R. Rabiner and D.H. Klatt. Comparative study of several distor-
tion measures for speech recognition, Speech Communication, 4, pp. 317-331, 1985.

11. S.-H. Cha and S.N. Srihari. On measuring the distance between histograms, Pattern Recogni-
tion, 35, pp. 1355-1370, 2002.

12. J.-K. Kamarainen, V. Kyrki, J. Ilonen and H. Kélvidinen. Improving similarity measures of
histograms using smoothing projections, Pattern Recognition Lett., 24, pp. 2009-2019, 2003.

13. F.-D. Jou, K.-C. Fan and Y.-L. Chang. Efficient matching of large-size histograms, Pattern
Recognition Lett., 25, pp. 277-286, 2004.

14. F. Serratosa and A. Sanfeliu. Signatures versus histograms: Definitions, distances and algo-
rithms, Pattern Recognition, 39, pp. 921-934, 2006.

15. V.V. Strelkov. A new similarity measure for histogram comparison and its application in time
series analysis, Pattern Recognition Lett., 29, pp. 1768-1774, 2008.

16. B. Gold and N. Morgan. Speech and Audio Signal Processing, John Wiley & Sons, Inc., New
Jersey, 2000.

17. S. Davis and P. Mermelstein. Comparison of parametric representations for monosyllabic
word recognition in continuously spoken sentences, IEEE Trans. Acoustics, Speech and Signal
Processing, ASSP-28, 4, pp. 357-366, 1980.

18. S. Nakagawa, M. Okada and T. Kawahara. Spoken Dialogue Systems, IOS Press, 2005.

19. F. Jelinek. Statistical Methods for Speech Recognition, MIT Press, 1998.

20. S.E. Levinson. Mathematical Models for Speech Technology, John Wiley & Sons, Inc., New
Jersey, 2003.

21. H.G. Hirsch and D. Pearce. The AURORA experimental framework for the performance
evaluation of speech recognition systems under noisy conditions, ISCA ITRW ASR2000, 2000.

22. HTK Team in Cambridge University Engineering Department. HTK Speech Recognition
Toolkit (The Hidden Markov Model Toolkit), http://htk.eng.cam.ac.uk/

Michihiro Jinnai (Member)

He received the B.S. degree in seismology from Ky-
oto University, Japan, the M.E. and Ph.D. degrees in
speech recognition from Kobe University, Japan, in 1976,
1980, and 1983, respectively. He is currently a professor
with the Department of Electro-Mechanical Systems En-
gineering, Kagawa National College of Technology, Japan.
His research interests include similarity scale and pattern
matching. He has been developing the application soft-
ware with geometric distance. It is used for detecting bird
call, bat call, and whale call in Australia.




New Similarity Scale to Measure the Difference in Like Patterns with Noise 87

Satoru Tsuge

Satoru Tsuge received his B.E., ML.E., and Dr. Eng. de-
grees from the University of Tokushima, Tokushima in
1996, 1998, and 2001, respectively. From 1997 to 1999, he
was an intern researcher at ATR Interpreting Telecommu-
nications Research Laboratories, Kyoto. Since 2000, he
has been with the Faculty of Engineering, the University
of Tokushima, Tokushima, where he is currently a lec-
turer. His current research interests include speech recog-
nition, speaker recognition, and information retrieval. He
is a member of IPSJ and ASJ.

Shingo Kuroiwa

He received the B.E., M.E. and D.E. degrees in electro-
communications from the University of Electro Commu-
nications, Tokyo, Japan, in 1986, 1988, and 2000, respec-
tively. From 1988 to 2001 he was a researcher at the KDD
R & D Laboratories. From 2001 to 2007, he was an As-
sociate Professor of Institute of Technology and Science
at the University of Tokushima, Japan. Since 2007, he
has been with Chiba University, Japan, where he is cur-
rently a Professor of Graduate School of Advanced In-
tegration Science. His current research interests include
speech recognition, speaker recognition, natural language
processing, and information retrieval. He is a member of
the IEICE, IPSJ, and ASJ.

Fuji Ren (Member)

He received the Ph.D. degree in 1991 from Faculty of
Engineering, Hokkaido University, Japan. He worked at
CSK, Japan, where he was a chief researcher of NLP.
From 1994 to 2000, he was an associate professor in the
Faculty of Information Sciences, Hiroshima City Univer-
sity. From 2001 he joined the faculty of engineering, the
University of Tokushima as a professor. His research inter-
ests include Natural Language Processing, Artificial In-
telligence, Language Understanding and Communication.
He is a member of the IEICE, CAAI, IEEJ, IPSJ, JSAI,
AAMT and a senior member of IEEE.




88 M. Jinnai, S. Tsuge, S. Kuroiwa, F. Ren, M. Fukumi

Minoru Fukumi

Minoru Fukumi received the B.E. and M.E. degrees
from the University of Tokushima, in 1984 and 1987, re-
spectively, and the doctor degree from Kyoto University
in 1996. Since 1987, he has been with the Department
of Information Science and Intelligent Systems, Univer-
sity of Tokushima. In 2005, he became a Professor in the
same department. He received the best paper award from

_ the SICE in 1995 and best paper awards from some inter-

: national conferences. His research interests include neural

networks, evolutionary algorithms, image processing and

human sensing. He is a member of the IEEE, SICE, IEEJ,
IPSJ and IEICE.



