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We have proposed a new similarity measure called the Geometric Distance. In the conven-
tional geometric distance algorithm, we have determined the optimum variance value of a
normal distribution using the “clean vowels in the continuous speech” for vowel recogni-

tion. However, there is a shortcoming with the above optimization method because only
the clean vowels are used. In this paper, to improve the shortcoming, we propose a new
optimization method using the weighted random numbers generated by the computer and
five patterns of long vowels, instead of the “clean vowels in the continuous speech”. By

using our proposed method, we have checked the relationship between the variance of the
normal distribution and the vowel recognition accuracy, and estimated the optimum vari-
ance value. Also, by using the estimated value, we have performed evaluation experiments
for the “long vowels with actual noise of 5 dB SNR” and achieved the vowel recognition

accuracy of 80.3%. We have verified the effectiveness of the proposed method.
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1. Introduction

Human beings, dogs, cats, and other such animals have “the sense of similari-

ty” in hearing and sight. To realize “the sense of similarity” using an algorithm

called “similarity measure” is an important subject for developing computer intelli-

gence. In recent years, various similarity measures have been researched in speech

recognition,1,2,3,4,5,6,7,8,9 pattern classification,10,11,12 image retrieval,13,14,15,16 and

detection of abnormal vibration.17 In our previous papers,18,19 we proposed a new

similarity measure called the Geometric Distance. A similarity measure is a concept

that should intuitively concur with the human concept of similarity in hearing and

sight. Therefore, we developed a mathematical model incorporating the following

two characteristics for the similarity measure.

<1> The distance metric must show good immunity to noise.

<2> The distance metric must increase monotonically when a difference increases

between peaks of the standard and input patterns.

Then, we proposed an algorithm based on one-to-many point mapping to realize

the mathematical model. Within the algorithm, the difference in shapes between

the standard and input patterns is replaced by the shape change of a reference

pattern having the initial shape of a normal distribution, and the magnitude of this

shape change is numerically evaluated as a variable of the moment ratio. In such a

case, from its principle, it is important to optimize the shape (variance σ2) of the

normal distribution that covers the standard and input patterns. Until now, we

have determined the optimum variance value of the normal distribution using the

“clean vowels in the continuous speech” for vowel recognition.18,19

However, there is a shortcoming with the above optimization method. That is,

the characteristic <1> of the above mathematical model is ignored because only the

clean vowels are used. The optimization needs to be made to maximize the effect

of the characteristics <1> and <2> of the mathematical model simultaneously.

Besides, since the optimum variance value of the normal distribution needs to be re-

calculated each time the speaker changes, a low processing overhead is also required

to calculate the optimum value. To improve the shortcoming and to satisfy the

requirement, we have studied the optimization method of the geometric distance

for various sounds.20

In this paper, we propose a new method to determine the optimum variance

value of the normal distribution for vowel recognition, where we consider both

characteristics <1> and <2> of the mathematical model and reduce the processing

overhead. We perform an experiment to estimate the optimum value by using our

proposed method. Also, we perform evaluation experiments of vowel recognition by

using the estimated value that we have calculated. These experiments use the same

voice data and feature parameters as those used in our previous papers.18,19 The

paper consists of the following sections. Section 2 describes the shortcoming that is

found in the conventional optimization method of the geometric distance. Section

3 describes the new optimization method of the geometric distance, and describes



A New Optimization Method of the Geometric Distance 135

the optimization experiment using the weighted random numbers generated by the

computer and five patterns of long vowels. Section 4 describes the evaluation ex-

periments of vowel recognition that have been carried out by using the calculated

optimum value (estimated value), and describes the effectiveness of the proposed

method. Section 5 describes the conclusions and touches on future work.

2. Conventional Optimization Method

Up to this stage, we have checked the relationship between the variance of the nor-

mal distribution and the vowel recognition accuracy, using the “clean long vowels

having the variability with time of 12 weeks” and the “clean vowels in the continu-

ous speech”.18,19 From the results of vowel recognition experiments, we have found

that the recognition accuracy reaches 100% in a wide variance value range of the

normal distribution in the variability with time below 4 weeks if the “clean long

vowels having the variability with time” are used. In such a case, we have a problem

determining the location of the maximum recognition accuracy. This means that

we will find it difficult to determine the optimum variance value of the normal dis-

tribution by using the “clean long vowels produced in a short period”. Meanwhile,

if the “clean vowels in the continuous speech” are used, the power spectrum of the

vowel changes minimally even if the voices are produced in a short period. There-

fore, the location of the maximum recognition accuracy is most obvious. Owing

to the above reason, the conventional optimization method estimates the optimum

variance value of the normal distribution using the “clean vowels in the continuous

speech”. And the evaluation experiments of vowel recognition are performed for

the “clean long vowels” and the “long vowels with actual noise” using the estimated

value.

However, there is the shortcoming in the above optimization method where the

characteristic <1> of the above mathematical model is ignored because only the

clean vowels are used. The optimization needs to be made to maximize the effect of

the characteristics <1> and <2> of the mathematical model simultaneously. In this

case, the shortcoming seemed to be able to be solved by optimization using the “long

vowels with actual noise”. In other words, optimization is achieved under conditions

where the “wobble” caused by the actual noise corresponds to the characteristic

<1> of the mathematical model, and the “difference” between the formants of the

standard and input patterns corresponds to the characteristic <2>. In this method,

however, it is necessary to record all of actual noise in the daily life, create the voice

data of long vowels including the actual noise each time the speaker changes, and

calculate the optimum value using such voice data. This requires a huge processing

overhead, and practical problems remain. As an improvement, we propose a new

method that can determine the optimum value with a low processing overhead in

the next section. This method simulates the actual noise in the daily life with a

small amount of synthetic noise generated by the computer. Note that the “long

vowel” is abbreviated as the “vowel” hereafter.



136 M. Jinnai, S. Tsuge, S. Kuroiwa, etc

Fig. 1. Subtraction of clean vowel from vowel with car 5dB.

Fig. 2. Difference patterns of actual noises.

3. New Optimization Method

In this paper, we have adopted a method to add “wobble” directly to the pattern

(the logarithmic power spectrum) whose shape is compared in order to apply the

geometric distance to the general pattern recognition. Generally, in the study of

speech recognition, the microphone output signal of the actual noise equivalent to

the SNR is added to the microphone output signal of the clean vowel, and the voice

data is created. Then, this voice data is multiplied by the window function (the

“Hamming window” in this research) to calculate the logarithmic power spectrum.

If the effect of the window function is considered, this is approximately equivalent to

the calculation of the logarithmic power spectrum after adding the power spectrum

of the actual noise equivalent to the SNR to the power spectrum of the clean vowel.

It is replaced by the direct addition of “wobble” caused by the actual noise to the

logarithmic power spectrum of the clean vowel. The proposed method uses weighted

random numbers generated by the computer instead of the “wobble” caused by the

actual noise. This means that the weighted random numbers generated by the

computer are added to the logarithmic power spectrum of the clean vowel and it

is used as the input pattern. Also, the logarithmic power spectrum of the clean

vowel is used as the standard pattern. In this case, both the characteristics <1>
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and < 2> of the mathematical model are well considered. In this section, we

check the relationship between the variance of the normal distribution and the

vowel recognition accuracy, using both the standard and input patterns as created

above and the algorithm19 of the geometric distance dA. Then, we determine the

optimum variance value of the normal distribution. In this section, we carry out

the optimization experiment using the same voice data as described in our previous

papers.18,19

3.1. Difference pattern of actual noise

In order to determine the best weighted random numbers to be added instead of the

“wobble” caused by the actual noise, we check the “wobble” of the logarithmic power

spectrum caused by the actual noise. An example is shown at the left and center of

Fig. 1. They are the logarithmic power spectrum arrays of the 23rd dimensional Mel

filter bank output (abbreviated as “logarithmic power spectrum” hereafter).21 Note

that the bar graph at the left of Fig. 1 shows the logarithmic power spectrum that

is extracted from the voice data created by adding the microphone output signal of

Car noise equivalent to the SNR of 5 dB to the microphone output signal of the clean

vowel /a/. Also, the bar graph at the center of Fig. 1 shows the logarithmic power

spectrum that is extracted from the clean vowel /a/. Then, the bar graph at the

right of Fig. 1 shows a difference pattern that is created by subtracting the latter

logarithmic power spectrum from the former logarithmic power spectrum. This

difference pattern shows the “wobble” of the logarithmic power spectrum caused by

the actual noise. Furthermore, Figs. 2(a)–(d) show the difference patterns which

have been calculated by the above method, using the 10th, 50th and 90th frames

of the central 100 frames of the clean vowel /a/ produced for a period of 2 seconds,

and using the actual noises of Babble, Car, Exhibition and Subway. From Fig. 2,

we can understand that the difference pattern of the actual noise changes randomly

with time while maintaining a constant shape.

3.2. Addition of weighted random numbers

The m-th dimensional logarithmic power spectrum of the clean vowel /a/ is shown

at the center of Fig. 1, where m=23. If the i-th logarithmic power spectrum values

(where, i=1, 2, · · · ,m) of a clean standard vowel and a clean input vowel are si and

xi, respectively, we create a standard pattern vector s having si components, and

an input pattern vector x having xi components, and represent them as follows.

In Eq.(1), the function of “T” means a transposed matrix.

s = ( s1, s2 , · · · , si, · · · , sm )T

x = (x1, x2, · · · , xi, · · · , xm)T (1)

Fig. 3 shows six types of m-th dimensional noise patterns as Noise 1 to Noise 6.

They have been generated as a typical example of difference patterns of the actual
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Fig. 3. 23rd dimensional noise patterns.

Table 1. Function ni of Noise 1 to Noise 6.

Noise 1

Noise 2

Noise 3

Noise 4

Noise 5

Noise 6

ni = α1

ni = α2 i

ni = α3 (24 − i)

ni = α4 (13 − i)

ni = α4

ni = α4 (i − 11)

ni = α5 i

ni = α5 × 12

ni = α6 × 12

ni = α6 (24 − i)

( 1 ≤ i ≤ 23)

( 1 ≤ i ≤ 23)

( 1 ≤ i ≤ 23)

( 1 ≤ i ≤ 11)

(i = 12)

(13 ≤ i ≤ 23)

( 1 ≤ i ≤ 11)

(12 ≤ i ≤ 23)

( 1 ≤ i ≤ 12)

(13 ≤ i ≤ 23)

1

noise as explained in Figs. 2(a)–(d). Also, if the i-th value (i=1, 2, · · · ,m) of the

noise pattern shown in Fig. 3 is ni, Table 1 shows ni as the function of i. Note that

values α1 to α6 are the constants which are calculated by the experiment described

in the next section. Here, we create a noise pattern vector n having ni components,

and represent it as follows.

n = (n1, n2, · · · , ni, · · · , nm)T (2)

Next, if variable Rnd is random numbers uniformly distributed within the range

of 0.0 to 1.0, as shown in the following equations, we assign soi to the component
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Fig. 4. Addition of weighted random numbers to clean vowel.

value si of standard pattern vector, and assign xoi to the addition of the component

value xi of input pattern vector and the weighted random numbers ni·Rnd.

soi = si

xoi = xi + ni·Rnd (i = 1, 2, 3, · · · ,m) (3)

Then, we create an original standard pattern vector so having soi components, and

an original input pattern vector xo having xoi components, and represent them as

follows.19

so = ( so1, so2, · · · , soi, · · · , som )T

xo = (xo1, xo2, · · · , xoi, · · · , xom)T (4)

so is the original standard pattern vector which has been created from the logarith-

mic power spectrum of clean standard vowel, and xo is the original input pattern

vector which has been created from the logarithmic power spectrum of clean input

vowel, added by the weighted random numbers generated by the computer. Fig. 4

shows the shape of the second formula of Eq. (3) using the noise pattern of Noise 2.

The bar graph at the left of Fig. 4 shows the shape of input pattern vector x given

by Eq. (1), and the bar graph at the right of Fig. 4 shows the shape of original

input pattern vector xo given by Eq. (4).

3.3. Calculation of component value ni of noise pattern vector

In our previous papers,18,19 the microphone output signals of Babble, Car, Exhi-

bition and Subway noise were added to those of the clean vowel with the 20 dB,

10 dB and 5 dB SNR, and the voice data was created. From these voice data,

the logarithmic power spectrum was calculated, and the input pattern was created.

Then, the shapes were compared between the standard and input patterns. On the

other hand, in this paper, as shown in Eq. (3), the input pattern is created by the

direct addition of the weighted random numbers ni·Rnd to the logarithmic power

spectrum value xi of the clean vowel, and their shapes are compared. Therefore,
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Fig. 5. Relationship between power spectrum and logarithmic power spectrum.

we need to calculate each component value ni of the noise pattern vector that is

equivalent to each SNR used in our previous papers.18,19 In other words, in Fig.

3 and on Table 1, we need to calculate values α1 to α6 that are equivalent to the

above SNR. The following explains their calculation.

When the microphone output signal of the clean vowel is passed through the

Mel filter bank with the m frequency bands, we assume that the power spectrum

array Xi (i = 1, 2, · · · ,m) is obtained. If the reference value of power spectrum

is X0, the logarithmic power spectrum array xi (i=1, 2, · · · ,m) that corresponds

to Xi can be calculated from the first formula of the following equation. Also, if

the component value ni (i = 1, 2, · · · ,m) of noise pattern vector is added to this

logarithmic power spectrum array xi (i=1, 2, · · · ,m), value xi+ni (i=1, 2, · · · ,m)

is obtained. The relationship between the value xi+ni and its corresponding power

spectrum array Xi+Ni (i=1, 2, · · · ,m) can be represented as the second formula

of the following equation.

xi = 10 log10
Xi

X0
( ni > 0 )

xi + ni = 10 log10
Xi +Ni

X0
(i = 1, 2, 3, · · · ,m) (5)

Fig. 5 shows the relationship between Xi and xi between Xi+Ni and xi+ni given by

Eq. (5) for the i-th frequency band of the filter bank. This section aims to calculate

the value ni that is equivalent to the SNR of 5 dB. The following equation can be
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obtained as an inverse function of Eq. (5).

Xi = X0 · 10xi/10

Xi +Ni = X0 · 10(xi+ni)/10 (i = 1, 2, 3, · · · ,m) (6)

In Eq. (6), we can obtain the following equation by substituting the first formula

into the second formula.

Ni = X0 · 10xi/10 (10ni/10 − 1) (i = 1, 2, 3, · · · ,m) (7)

In Eq. (3), if the variable Rnd is random numbers uniformly distributed within the

range of 0.0 to 1.0, xoi=xi+ni·Rnd and, therefore, xoi uniformly distributes within

the range of xi to xi+ni. Fig. 5 shows the probability density function of the flat

shape which has function value 1/ni in range [xi, xi+ni] on axis x. As shown in Fig.

5, if we only focus on the i-th frequency band of the filter bank, it is appropriate to

express the weighted random numbers ni·Rnd as the uniformly distributed random

numbers ni·Rnd. The weighted random numbers ni·Rnd means the multiplication

of different weight ni to each of the i-th frequency band. In this section, we use

them in differently ways as necessary. Because the gradient of logarithmic curve

x=10 log10X/X0 is dx/dX= (10 log10e)/X, the probability density function p(X)

on axis X, which corresponds to the probability density function 1/ni on axis x, is

described by the following equation.

p(X) =
10 log10 e

niX
(i = 1, 2, 3, · · · ,m) (8)

Thus, Fig. 5 shows the probability density function which has function value p(X)=

(10 log10 e)/(niX) in range [Xi, Xi+Ni] on axis X. From the following equation,

we can confirm that the total area of probability density function p(X) is equal to

1. Here, we can obtain the fifth formula of Eq. (9) by substituting Eq. (5) into the

fourth formula of Eq. (9).∫ Xi+Ni

Xi

p(X) dX =

∫ Xi+Ni

Xi

10 log10 e

niX
dX

=
10 log10 e

ni

∫ Xi+Ni

Xi

1

X
dX

=
10 log10 e

ni

{
loge(Xi +Ni)− logeXi

}
(9)

=
1

ni

{
10 log10

Xi +Ni

X0
− 10 log10

Xi

X0

}
=

1

ni

{
(xi + ni)− xi

}
= 1 (i = 1, 2, 3, · · · ,m)

Where, if the uniformly distributed random numbers ni·Rnd are added to the log-

arithmic power spectrum xi of the clean vowel on axis x, we assume that the power
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spectrum on axis X, which corresponds to xi+ni·Rnd, is X. Now, expected value

Ei[X] of the power spectrum X can be calculated by the following equation.

Ei[X] =

∫ Xi+Ni

Xi

X· p(X) dX

=

∫ Xi+Ni

Xi

X· 10 log10 e
niX

dX (10)

= (10 log10 e) ·
1

ni
·Ni (i = 1, 2, 3, · · · ,m)

We can obtain the following equation by substituting Eq. (7) into Eq. (10).

Ei[X] = (10 log10 e) ·X0 · 10xi/10 · 10
ni/10 − 1

ni
(11)

(i = 1, 2, 3, · · · ,m)

On axis X of Fig. 5, the average energy of power spectrum of the clean vowel is

Xi, and the average energy of power spectrum, which corresponds to the uniformly

distributed random numbers ni·Rnd, is Ei[X]−Xi. Therefore, the signal-to-noise

ratio (SNR) of the entire frequency band can be calculated by the following equation.

SNR = 10 log10

m∑
i=1

Xi

m∑
i=1

(Ei[X]−Xi)

= 10 log10

m∑
i=1

Xi

m∑
i=1

Ei[X]−
m∑
i=1

Xi

(12)

We can obtain the following equation by substituting Eqs. (6) and (11) into Eq.

(12).

SNR = 10 log10

X0

m∑
i=1

10xi/10

(10 log10 e) ·X0

m∑
i=1

10xi/10 · 10
ni/10 − 1

ni
−X0

m∑
i=1

10xi/10

= 10 log10

m∑
i=1

10xi/10 (13)

−10 log10

{
(10 log10 e)

m∑
i=1

10xi/10 · 10
ni/10 − 1

ni
−

m∑
i=1

10xi/10

}
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Furthermore, we assign ψ(n1, n2,· · · , nm) to the right side of Eq. (13) that is sub-

tracted by the left side, and represent it as follows.

ψ(n1, n2,· · · , nm) = 10 log10

m∑
i=1

10xi/10 (14)

−10 log10

{
(10 log10 e)

m∑
i=1

10xi/10 · 10
ni/10 − 1

ni
−

m∑
i=1

10xi/10

}
− SNR

In Eq. (14), xi is the logarithmic power spectrum value of the clean vowel, and we

can set its value using the voice data. Therefore, Eq. (14) is the function of ni
(i=1, 2, · · · ,m).

Next, we show that ψ(n1, n2,· · · , nm) decreases monotonically when each ni (i=

1, 2, · · · ,m) increases. For that purpose, we assign ϕ1(ni) to term (10ni/10 − 1)/ni
of Eq. (14) as follows, and we check its increase or decrease.

ϕ1(ni) =
10ni/10 − 1

ni
(i = 1, 2, 3, · · · ,m) (15)

Here, we can obtain the following equation by differentiating Eq. (15) by ni.

ϕ′1(ni) =

(
10ni/10 − 1

ni

)′

=
(loge 10

1/10) ni 10
ni/10 − 10ni/10 + 1

n2i
(16)

=
ϕ2(ni)

n2i
(i = 1, 2, 3, · · · ,m)

Furthermore, we assign ϕ2(ni) to the numerator of Eq. (16) as follows, and we check

its positive or negative.

ϕ2(ni) = (loge 10
1/10) ni 10

ni/10 − 10ni/10 + 1 (17)

(i = 1, 2, 3, · · · ,m)

For that purpose, we calculate Eq. (17) if ni=0 and its derived function as follows.

ϕ2( 0 ) = 0 (18)

ϕ′2(ni) = (loge 10
1/10)2 ni 10

ni/10 > 0 ( ni > 0 ) (19)

(i = 1, 2, 3, · · · ,m)

From Eqs. (18) and (19), it is clear that ϕ2(ni)>0. Then, from Eq. (16), it is

clear that ϕ′1(ni)>0 and, therefore, Eq. (15) is a monotonically increasing function.

From the above, it is clear that the value of Eq. (14) decreases monotonically when

each ni (i=1, 2, · · · ,m) increases.

In this paper, each ni (i=1, 2, · · · ,m) is related to each other by the parameter

αk (k=1, 2, · · · , 6) as shown on Table 1. In the case of Noise 1 to Noise 6 shown on

Table 1, each ni increases monotonically when each αk increases and, therefore, the
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Fig. 6. Graph of function ψ(α2).

Table 2. Solution α2 of ψ(α2)=0 ( Noise 2 : ni = α2i ).

α2 /a/ /i/ /u/ /e/ /o/

SNR 5 dB 0.1740 0.1642 0.1769 0.1701 0.1843
SNR 3 dB 0.2484 0.2340 0.2519 0.2426 0.2623
SNR 1 dB 0.3421 0.3216 0.3457 0.3337 0.3595

value of Eq. (14) decreases monotonically. In particular, ni=α2i (i=1, 2, · · · ,m)

for Noise 2, and Eq. (14) can be rewritten as follows.

ψ(α2) = 10 log10

m∑
i=1

10xi/10 (20)

−10 log10

{
(10 log10 e)

m∑
i=1

10xi/10 · 10
α2i/10 − 1

α2i
−

m∑
i=1

10xi/10

}
− SNR

Fig. 6 shows a relational graph between α2 and ψ(α2) obtained through numerical

analysis of Eq. (20). Note that we assumed that SNR=5 in Eq. (20). Also, we have

substituted the mean value of each logarithmic power spectrum, calculated from

the central 100 frames of the clean vowel /a/, into xi (i=1, 2, · · · ,m). As shown

in Fig. 6, Eq. (20) is a monotonically decreasing function, and it is clear that we

can uniquely determine a solution α2 of ψ(α2)=0 through numerical analysis. As

described above, we could obtain solution α2=0.1740 of ψ(α2)=0 from Fig. 6. Table

2 shows the values of α2 which are obtained for each vowel and for each SNR when

SNR=5, SNR=3 and SNR=1 and if the noise pattern of Noise 2 and “01Clean”18 of

each vowel are used. “01Clean” is the first “clean vowel” that was produced among

72 sounds in 12 weeks.
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Fig. 7. Addition of random noise to clean vowel.

The above calculation procedure is summarized below. First, in Eq. (6), power

spectra Xi and Xi+Ni on axis X shown in Fig. 5 are expressed by logarithmic power

spectra xi and xi+ni on axis x. Also, in Eq. (11), expected value Ei[X] of power

spectrum X on axis X, which corresponds to xi+ni·Rnd on axis x, is expressed

by xi and ni. Then, we calculate the SNR on axis X using Eq. (12), substitute

Eqs. (6) and (11) into Eq. (12). Therefore, the SNR is expressed by xi and ni in

Eq. (13). We substitute the mean value of the logarithmic power spectra of the

clean vowel into xi. Now, Eq. (13) is an equation of m variables with unknowns ni
(i=1, 2, · · · ,m). In this paper, each ni (i=1, 2, · · · ,m) is related by the parameter

αk (k=1, 2, · · · , 6) as shown on Table 1. Therefore, Eq. (13) is rewritten by Eq.

(20). Eq. (20) is an equation of single variable with unknown α2. And we calculate

solution α2 and obtain value ni that is equivalent to the SNR of 5 dB.

By using the above calculation procedure, the value of each αk (k=1, 2, · · · , 6)
is calculated for the noise patterns of Noise 1 to Noise 6, and Table 2 of each

noise pattern is obtained. Then, the weighted random numbers ni·Rnd, which is

equivalent to the SNR, is generated by the computer. Fig. 7 shows the process

where the weighted random numbers ni·Rnd (i = 1, 2, · · · ,m) equivalent to the

SNR of 5 dB are added to the logarithmic power spectrum xi (i= 1, 2, · · · ,m) of

the clean vowel /a/, using Noise 4 and Eq. (3), and then the component value xoi
(i=1, 2, · · · ,m) of the original input pattern vector is created. It is clear that the

shape of the weighted random numbers, shown at the center of Fig. 7, is similar to

the difference pattern of the actual noise shown in Fig. 2.

Finally in this section, we discuss the relationship between the area (or energy) of

the weighted random numbers generated by the computer and that of the difference

pattern of actual noise. After calculating the average area of the weighted random

numbers of 5 dB SNR and that of the difference pattern of 5 dB SNR, using the

central 100 frames of each vowel produced for a period of 2 seconds, we have found

that the former value is 16.2% greater than the latter value. We suppose that there

are two causes for that as follows. First, in the calculation of the weighted random

numbers, we substituted the mean value of the logarithmic power spectra, calculated

from the central 100 frames of each vowel produced for a period of 2 seconds, into

Eq. (20), and obtained solution αk (k=1, 2, · · · , 6). These frames are overlapped

for the 25 msec frame width and 10 msec frame period. In the calculation of the
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Table 3. Logarithmic power spectra for optimizing normal distribution.

/a/ /i/ /u/ /e/ /o/

01 Clean 100 100 100 100 100
Standard pattern 1 1 1 1 1

01 Clean with SNR 5dB random noise
{1} of Noise 1

Input pattern 100×50 100×50 100×50 100×50 100×50
01 Clean with SNR 5dB random noise

{2} of Noise 2
Input pattern 100×50 100×50 100×50 100×50 100×50

: :
... ... ... ... ...

01 Clean with SNR 5dB random noise
{6} of Noise 6

Input pattern 100×50 100×50 100×50 100×50 100×50

difference pattern, we calculated the SNR using the microphone output signal of

the entire interval of 2-second vowel. We suppose that those average areas are

different because the calculation intervals of SNR differ between them. Second,

we obtained the logarithmic power spectrum value xi (i=1, 2, · · · ,m) of the clean

vowel using the Hamming window, and substituted this value into Eq. (20) in order

to obtain solution αk. Therefore, we suppose that an effect of the Hamming window

appears as described at the beginning of Section 3. In Section 4.2, based on our

experiments, we will discuss the estimation error of optimum value caused by the

above area difference.

3.4. Creation of original pattern vectors

Here, we use the αk (k = 1, 2, · · · , 6) values obtained in the previous section, and

create the original standard pattern vector and original input pattern vector given

by Eq. (4), by applying the αk values to the same voice data as those used in our

previous papers.18,19 Note that the original standard pattern vector is abbreviated

as “the standard pattern”, and the original input pattern vector is abbreviated as

“the input pattern” hereafter. Table 3 shows the type and the number of the 23rd

dimensional logarithmic power spectrum that has been used for the standard and

input patterns in the optimization experiment. The logarithmic power spectra,

each consisting of 100 frames shown on the first row of Table 3, have been extracted

from “01Clean” of each vowel. Then, the median18 is determined from the above

100 frames and it is used as the standard pattern of each vowel. The logarithmic

power spectra, each consisting of one frame shown on the second row of Table 3,

are the standard patterns that have been determined for each vowel.

Also, the logarithmic power spectra, each consisting of 100×50 frames shown in

{1} to {6} of Table 3, have been created by adding the weighted random numbers to
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Fig. 8. Vowel recognition accuracy and optimum value ω.

the logarithmic power spectra, each consisting of 100 frames of the above “01Clean”,

using Eq. (3) and the noise patterns of Noise 1 to Noise 6 shown in Fig. 3 when

SNR=5. During this time, the uniformly distributed random numbers Rnd are

generated repeatedly and the logarithmic power spectra, each consisting of 100×50

frames, are created. Then, the logarithmic power spectra of these 6×100×50×5

frames are used as the input patterns.

As described above, in the optimization experiment, we create the standard

pattern and the input pattern by using the weighted random numbers generated by

the computer and five patterns of “clean vowel 01Clean”.

3.5. Variance optimization of normal distribution

We determine the optimum value of the variance σ2 of the normal distribution

(the optimum value of ω)18 using both the standard and input patterns created

in the previous section and the algorithm19 of the geometric distance dA. Similar

to the vowel recognition experiments of the previous papers,18,19 the value ω is

incremented by 0.2 from 3.0 to 23.0, and the recognition accuracy of the input

pattern is calculated by using 100×50×5-frame input patterns shown in {1} to

{6} of Table 3. Fig. 8 shows the calculated relationship between the value ω and

the recognition accuracy by six thin lines, respectively. Also, these six curves are

averaged and the average recognition accuracy is shown by thick lines in Fig. 8.

From Fig. 8, it is discovered that the recognition accuracy curve of Noise 1 is higher

than each curve of Noise 2 to Noise 6 in the all ω value range. We suppose the cause

as follows. Within the geometric distance algorithm, the “wobble” caused by the

random numbers is replaced by the shape change of the reference pattern having

the initial shape of the normal distribution. During this time, the shape of the noise

pattern of Noise 1 is flat (or uniform) as shown in Fig. 3 and, therefore, we suppose

that the “wobble” is absorbed effectively. Furthermore, from Fig. 8, it is discovered
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Table 4. Vowel recognition accuracy with geometric distance dA. (ω = 10.6)

Babble Car Exhibition Subway Mean

Clean 99.98%
SNR 20 dB 99.92% 99.86% 99.22% 99.56% 99.64%
SNR 10 dB 98.52% 97.94% 88.16% 93.97% 94.65%
SNR 5 dB 91.68% 82.13% 66.85% 80.44% 80.28%

that the peak of recognition accuracy is at the same location for each of the Noise

1 to Noise 6 curves. We can see that the average recognition accuracy of Noise 1 to

Noise 6 becomes maximum if ω=10.6. Thus, we determine ω=10.6 as the optimum

value and use it in the following evaluation experiments. When we have performed

the optimization experiment using the input pattern, each consisting of 100×10

frames, instead of the input pattern, each consisting of 100×50 frames shown in

{1} to {6} of Table 3, we could obtain almost the same curves as the recognition

accuracy curves shown in Fig. 8. The optimum value was ω=10.6. This shows that

we can reduce the processing overhead to obtain the optimum value.

4. Evaluation Experiments of Vowel Recognition

To check the effectiveness of optimization method described in the previous section,

we have performed the evaluation experiments for the “clean vowel” and the “vowel

with actual noise” using the value ω=10.6 determined in the previous section and

the algorithm19 of the geometric distance dA. The value ω=11.0 is used in our

previous paper,19 but the value ω=10.6 is used for the evaluation experiments in

this section. Except for this value, we have performed the evaluation experiments

of vowel recognition using the same voice data and the method as those used in our

previous paper.19

4.1. Evaluation experiments and their results

In the optimization experiment of the previous section, we determined the optimum

value (estimated value) of ω=10.6 by using only the “clean vowel 01Clean” that

was produced first among 72 sounds in 12 weeks as shown on Table 3. Similar

to the vowel recognition experiments of the previous paper,19 in the evaluation

experiments of this section, the median was determined from 100 frames of the

above “clean vowel 01Clean” and it was used as the standard pattern of each vowel.

On the other hand, the “clean vowel 02Clean to 72Clean” produced in the 2nd

to 72nd sounds were used as the input patterns. In addition, the actual Babble,

Car, Exhibition and Subway noises were added to these “clean vowel 02Clean to

72Clean” with the 20 dB, 10 dB and 5 dB SNR, and the input patterns were created.

Table 4 shows the result of evaluation experiments. As shown on Table 4, the

average recognition accuracy of the “vowel with actual noise of 5 dB SNR” is 80.28%

in the evaluation experiment where the optimum value (estimated value) of ω=10.6

is used.
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Fig. 9. Recognition accuracy of clean vowel.

Fig. 10. Recognition accuracy of vowel with actual noise.

Fig. 11. Vowel recognition accuracy and optimum value ω.
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4.2. Verification of optimum value

Table 4 shows the result of recognition accuracy using the optimum value (estimated

value) of ω=10.6 that we have determined from Fig. 8. Here, in order to verify that

the value ω=10.6 is truly the optimum value, the value ω is incremented by 0.2

from 3.0 to 23.0 and the recognition accuracy of the “clean vowel” and the “vowel

with actual noise of 5 dB SNR” is calculated. Figs. 9 and 10 show the calculated

relationship between the value ω and the recognition accuracy for the input patterns

of the “clean vowel” and the “vowel with Babble 5dB, Car 5dB, Exhibition 5dB, and

Subway 5dB”, respectively. From Figs. 9 and 10, we can find that the recognition

accuracy is almost maximum in the value ω=10.6.

Furthermore, the four curves of actual noise, shown in Fig. 10, are averaged

and this average recognition accuracy is shown by a thick line in Fig. 11. In the

calculation of the average recognition accuracy for Noise 1 to Noise 6 shown by thick

lines in Fig. 8, the values of SNR=5, SNR=3 and SNR=1 are used respectively,

and their results are shown by three thin lines in Fig. 11. Note that the average

recognition accuracy curves of 5 dB SNR shown by the thick lines in Fig. 8, are the

same as that shown by the thin line in Fig. 11. In Fig. 11, the recognition accuracy

curves of the optimization experiments using the “vowel with weighted random

numbers” are shown by three thin lines, but the recognition accuracy curve of the

evaluation experiment using the “vowel with actual noise” is shown by one thick

line. From Fig. 11, it is clear that the four curves of recognition accuracy have the

same features and that the locations of the maximum recognition accuracy almost

match each other. This means that we can estimate the optimum variance value of

the normal distribution, using the “vowel with weighted random numbers” instead

of the “vowel with actual noise”. From Fig. 11, it is also clear that the weighted

random numbers of 3 dB SNR is equivalent to the actual noise of 5 dB SNR for

the average recognition accuracy. We suppose the cause as follows. Within the

geometric distance algorithm, the “wobble” of input pattern is replaced by the shape

change of the reference pattern having the initial shape of the normal distribution.

During this time, the “wobble” caused by the random numbers is more random

than the actual noise and, therefore, we suppose that the “wobble” is absorbed

effectively.

At the end of Section 3.3, we described the difference between the area (or

energy) of the weighted random numbers of 5 dB SNR and that of the difference

pattern of actual noise of 5 dB SNR. Next, we discuss this. In Fig. 11, we can

obtain the value ω=10.6 even when we use any of the recognition accuracy curves,

shown by three thin lines, in the optimization experiment. Now, on Table 2, the

value α2 of 1 dB SNR is almost 2 times that of 5 dB SNR. In other words, the area

of noise pattern of 1 dB SNR is almost 2 times larger than that of 5 dB SNR case.

This is similar to other αk values. When compared with this change, the 16.2%

difference shown in Section 3.3 is small. They show that the difference between

their areas does not affect the estimation of optimum value.
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From the average recognition accuracy curve of the “vowel with actual noise of

5 dB SNR” shown by thick line in Fig. 11, it is discovered that the recognition accu-

racy becomes maximum if ω=11.0. It is discovered that the recognition accuracy is

80.28% if ω=10.6 and the recognition accuracy is 82.11% if ω=11.0. The difference

between them is 1.83% and it is small. From the recognition accuracy curve of

the “clean vowel” shown in Fig. 9, it is discovered that the recognition accuracy is

99.98% if ω=10.6 and the recognition accuracy is 99.97% if ω=11.0. The difference

between them is small. This shows that we can determine the optimum value of ω

using the “vowel with weighted random numbers”.

In this paper, as shown in Figs. 8 and 11, we have used the vowel recognition

accuracy as the objective function in order to estimate the optimum variance value.

Meanwhile, we used a statistic T of “Welch’s T -test” as the objective function

and performed the optimization experiment for bird vocalisations.20 If we compare

the two results, we find that the former objective function curves and the latter

objective function curve have the same features.

5. Conclusions and Future Work

We have proposed a new optimization method of the geometric distance to deter-

mine the optimum variance value of the normal distribution, using the weighted

random numbers generated by the computer and five patterns of vowels. At this

time, we have performed the vowel recognition experiments using the “vowel with

weighted random numbers” and the “vowel with actual noise”, respectively, and

checked the relationship between the variance of the normal distribution and the

vowel recognition accuracy. The results have shown that the curves of their vowel

recognition accuracy have the same features and that the locations of the maximum

recognition accuracy almost match each other. This means that we can estimate the

optimum variance value of the normal distribution using the “vowel with weighted

random numbers” instead of the “vowel with actual noise”. Then, we have used the

estimated value obtained from the “vowel with weighted random numbers” and per-

formed the evaluation experiments for the “vowel with actual noise of 5 dB SNR”,

and verified the effectiveness of our proposal.

Finally, we describe future work. This paper shows that we have obtained the

estimated value of ω=10.6 using each noise pattern of Noise 1 to Noise 6. On the

other hand, we have found that the true optimum value is ω=11.0 in the evaluation

experiments where we used four types of actual noises of Babble, Car, Exhibition,

and Subway. In order to reduce the difference between them, we will perform the

optimization experiments using more types of noise patterns and will perform the

evaluation experiments using more types of actual noises. We will compare the

results of those experiments, find out the type of noise pattern to be required at

minimal for optimization, and improve our optimization method so that we can

determine a more accurate estimation value and reduce the processing overhead

by using less types of noise patterns. We will apply the results of the algorithm
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proposed in this paper and the emotional expression analysis of text22,23 to our

project named Recognizing Human Emotion and Creating Machine Emotion.24,25

Also, we will perform the optimization experiments using the normal random num-

bers, instead of the uniformly distributed random numbers, and will compare the

results of these experiments.
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