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1
METHOD FOR DETECTING ABNORMAL
SOUND AND METHOD FOR JUDGING
ABNORMALITY IN STRUCTURE BY USE OF
DETECTED VALUE THEREOEF, AND
METHOD FOR DETECTING SIMILARITY
BETWEEN OSCILLATION WAVES AND
METHOD FOR RECOGNIZING VOICE BY
USE OF DETECTED VALUE THEREOF

TECHNICAL FIELD

The present invention relates to a method for detecting a
similarity between standard information and input informa-
tion and to a method for judging whether or not the input
information is abnormal or for recognizing whether or not
the input information is identical to the standard information
by use of a detected value of the similarity. More specifi-
cally, the present invention relates to a method for detecting
an abnormal sound with regard to a sound or an oscillation
generated by hitting a concrete structure using a hammer, a
method for judging abnormality in the concrete structure
based on a detected value of the abnormal sound, a method
for detecting a similarity between any standard and input
oscillation waves, and a method for recognizing a voice by
use of a detected value of the similarity.

BACKGROUND ART

In a concrete structure, damage such as a cavity occurs
inside a concrete structure owing to wind, rain and tempera-
ture variation over many years. Such a structure, for detect-
ing abnormality with the structure such as a cavity, is
equipped with means for detecting an abnormal sound with
regard to a sound or an oscillation generated by hitting a
concrete structure using a hammer, and for monitoring
whether there is abnormality with the structure based on the
detected value of the abnormal sound.

As a technology of detecting a similarity between a
standard sound and an input sound as a geometric
distance, the gazette of Japanese Patent No. 3426905
(Japanese Patent Application No. Hei 9(1997)-61007,
Title of the Invention: Method for detecting an abnor-
mal sound and method for judging abnormality in
machine by use of detected value thereof, and method
for detecting similarity between oscillation waves and
method for recognizing voice by use of detected value
thereof) is known.

As an improved technology of detecting a similarity
between standard information and input information as
a geometric distance, the gazette of Japanese Patent No.
3342864 (Japanese Patent Application No. 2000-
277749, Title of the Invention: Method for detecting
similarity between voices and method for recognizing
voice by use of detected value thereof, method for
detecting similarity between oscillation waves and
method for judging abnormality in machine by use of
detected value thereof, method for detecting similarity
between images and method for recognizing image by
use of detected value thereof, method for detecting
similarity between solids and method for recognizing
solid by use of detected value thereof, and method for
detecting similarity between moving images and
method for recognizing moving image by use of
detected value thereof) is known.

As a further improved technology of detecting a similarity
between standard information and input information as
a geometric distance, the gazette of Japanese Patent No.

10

15

20

25

30

35

40

45

50

55

60

65

2

3422787 (Japanese Patent Application No. 2002-
68231, Title of the Invention: Method for detecting
similarity between images and method for recognizing
image by use of detected value thereof, method for
detecting similarity between voices and method for
recognizing voice by use of detected value thereof,
method for detecting similarity between oscillation
waves and method for judging abnormality in machine
by use of detected value thereof, method for detecting
similarity between moving images and method for
recognizing moving image by use of detected value
thereof, and method for detecting similarity between
solids and method for recognizing solid by use of
detected value thereof) is known.

The method for detecting a similarity between standard
information and input information in the above three prior
arts includes the steps of: registering in advance a standard
pattern vector having, as a component, a feature quantity
such as a power spectrum of a standard sound; creating an
input pattern vector having a feature quantity of an input
sound as a component; and calculating the degree of simi-
larity between the standard pattern vector and the input
pattern vector as a geometric distance. Moreover, the
method for detecting an abnormal sound in the above three
prior arts includes the step of: comparing a calculated value
of the geometric distance with an arbitrarily set allowed
value.

Incidentally, in statistical analysis, a normal distribution is
usually used as a model of a phenomenon. Then, a “kurtosis”
and a “skewness” are used to verify whether the phenom-
enon obeys the normal distribution or not. Here, the kurtosis
and the skewness are statistics. If a probability distribution
of the phenomenon follows the normal distribution, then a
value of the kurtosis is equal to 3. If it has peakedness
relative to the normal distribution, then a value of the
kurtosis is greater than 3. Conversely, if it has flatness
relative to the normal distribution, then a value of the
kurtosis is less than 3. Also, if a probability distribution of
the phenomenon is symmetrical about the center axis, then
a value of the skewness is equal to 0. If the tail on the right
side of the probability distribution is longer than the left
side, then a value of the skewness is greater than 0. Con-
versely, if the tail on the left side of the probability distri-
bution is longer than the right side, then a value of the
skewness is less than 0.

In the prior arts, the degree of similarity between the
standard pattern vector and the input pattern vector is
calculated as a geometric distance by using only a “kurto-
sis”. In the present invention, the degree of similarity
between the standard pattern vector and the input pattern
vector is calculated as a new geometric distance by using
both “kurtosis” and “skewness”. Therefore, in order to
distinguish “kurtosis” from “skewness” and describe them
clearly, we change names from a “weighting vector” and a
“weighting curve” in the prior art (the gazette of Japanese
Patent No. 3422787) into a “kurtosis-weighting vector” and
a “kurtosis-weighting curve” in the present invention,
respectively. Also, we change names from an “original and
weighted standard pattern vector” and an “original and
weighted input pattern vector” in the prior art (the gazette of
Japanese Patent No. 3422787) into a “kurtosis-weighted
standard pattern vector” and a “kurtosis-weighted input
pattern vector” in the present invention, respectively. Fur-
ther, we change a name from a “geometric distance” in the
prior arts (the gazette of Japanese Patent No. 3426905, No.
3342864 and No. 3422787) into a “kurtosis geometric
distance” in the present invention.
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In the method of calculating the kurtosis geometric dis-
tance of the prior arts, a difference in shapes between
standard and input patterns is replaced by a shape change in
a reference shape (a reference pattern) such as a normal
distribution, and the magnitude of this shape change is
numerically evaluated as a variable of the kurtosis. Then, the
variable of the kurtosis is calculated while moving the center
axis of the reference pattern to a position of each component
of'the standard and input patterns, and the kurtosis geometric
distance is calculated by using these variables of the kurto-
sis. Note that, in the prior art (the gazette of Japanese Patent
No. 3422787), the approximate value of the variable of the
kurtosis is calculated, instead of calculating the variable of
the kurtosis directly.

In general, an equation for calculating the kurtosis of a
vector cannot be defined if the component value of the
vector is negative. Therefore, in the prior arts, positive and
negative reference pattern vectors that have a normal dis-
tribution as their initial shapes are created, and a difference
in shapes between standard and input patterns is replaced by
the shape changes of the positive and negative reference
pattern vectors so that the component value of the vector
may not become negative. However, in the case where the
difference in shapes between standard and input patterns is
small, the component value of the vector does not become
negative even if we use a method where the difference in
shapes between standard and input patterns is replaced by
the shape change in a single reference pattern vector. If we
explain a principle of the prior arts by using the latter
method instead of the former method, it is easier to under-
stand. Therefore, in the following, we explain the principle
of the prior arts by using a single reference pattern vector (a
single shape of reference pattern). Namely, we explain the
prior arts by using the method where the component value
of a single reference pattern changes by a difference
obtained by subtracting the component value of the standard
pattern from the component value of the input pattern, and
the magnitude of this shape change is numerically evaluated
as a variable of the kurtosis.

The upper and middle diagrams of FIGS. 53(a) to 53(e)
show a typical example of the shapes of the standard and
input pattern vectors, respectively. FIGS. 53(a) to 53(d) each
show the standard and input patterns having a single peak.
FIG. 53(e) typically shows the standard pattern having a flat
shape and the input pattern where a “wobble” occurs in the
flat shape. Also, the bottom diagrams of FIGS. 53(a) to 53(e)
show an example where a difference in shapes between the
standard and input patterns is replaced by the shape change
in the reference pattern having the normal distribution as its
initial shape. Note that the peaks of the standard and input
patterns shown in FIGS. 53(a) to 53(d) are assumed to have
the same height, and the area of each standard pattern and
each input pattern shown in FIGS. 53(a) to 53(e) is equal to
1.

FIG. 53(a) gives an example of the case where standard
pattern and input pattern have the same shape. Since the
reference pattern does not change in its shape from the
normal distribution during this time, the kurtosis
becomes A=3.

FIGS. 53(b), 53(¢) and 53(d) each show an example
exhibiting a small, medium, and large “difference” of
peaks between the standard and input patterns. During
this time, the component value of the reference pattern
decreases by the absolute value of the difference
between the component value of the standard pattern
and the component value of the input pattern at peak
position of each standard pattern. At the same time, the
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component value of the reference pattern increases by
the absolute value of the difference between the com-
ponent value of the standard pattern and the component
value of the input pattern at peak position of each input
pattern.

In FIG. 53(b), the position of the decreased component
value of the reference pattern and that of the increased
component value of the reference pattern are close.
Since the effect of a decrease and an increase is
cancelled out, the kurtosis becomes A=~3.

In FIG. 53(d), since the shape of the reference pattern has
flatness relative to the normal distribution, the kurtosis
becomes A<<3.

In FIG. 53(c¢), since the shape of the reference pattern is
an intermediate state between FIG. 53(b) and FIG.
53(d), the kurtosis becomes A<3.

Therefore, from FIGS. 53(a) to 53(d), we can understand
that the value of the kurtosis decreases monotonically as the
“difference” increases between peaks of the standard and
input patterns.

In FIG. 53(e), the reference pattern has a small shape
change from the normal distribution, because the shape
of the reference pattern increases and decreases alter-
nately by the absolute value of the difference between
the component value of the standard pattern and the
component value of the input pattern. The kurtosis
becomes A=~3. Also, if the shape of the reference pattern
increases and decreases randomly, the kurtosis
becomes A~3.

In the method for calculating the kurtosis geometric
distance of the prior arts, the variable of the kurtosis is
obtained by subtracting 3 from the value of the kurtosis.
Then, the variable of the kurtosis is calculated while moving
the center axis of the reference pattern to a position of each
component of the standard and input patterns, and the
kurtosis geometric distance is obtained by calculating a
square root of a sum of each variable of kurtosis squared.
Thus, when a “difference” occurs between peaks of the
standard and input patterns with “wobble” due to noise or
the like, the “wobble” is absorbed and the kurtosis geometric
distance increases monotonically as the “difference”
increases.

CITATION LIST
Patent Literatures

{Patent Literature 1} The gazette of Japanese Patent No.
3426905 (Japanese Patent Application No. Hei 9(1997)-
61007, Title of the Invention: Method for detecting an
abnormal sound and method for judging abnormality in
machine by use of detected value thereof, and method for
detecting similarity between oscillation waves and method
for recognizing voice by use of detected value thereof)

{Patent Literature 2} The gazette of Japanese Patent No.
3342864 (Japanese Patent Application No. 2000-277749,
Title of the Invention: Method for detecting similarity
between voices and method for recognizing voice by use of
detected value thereof, method for detecting similarity
between oscillation waves and method for judging abnor-
mality in machine by use of detected value thereof, method
for detecting similarity between images and method for
recognizing image by use of detected value thereof, method
for detecting similarity between solids and method for
recognizing solid by use of detected value thereof, and
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method for detecting similarity between moving images and
method for recognizing moving image by use of detected
value thereof)

{Patent Literature 3} The gazette of Japanese Patent No.
3422787 (Japanese Patent Application No. 2002-68231,
Title of the Invention: Method for detecting similarity
between images and method for recognizing image by use of
detected value thereof, method for detecting similarity
between voices and method for recognizing voice by use of
detected value thereof, method for detecting similarity
between oscillation waves and method for judging abnor-
mality in machine by use of detected value thereof, method
for detecting similarity between moving images and method
for recognizing moving image by use of detected value
thereof, and method for detecting similarity between solids
and method for recognizing solid by use of detected value
thereof)

SUMMARY OF INVENTION
Technical Problem

However, in case of using the kurtosis for detecting a
similarity between the standard and input patterns, it may
happen that the value of the kurtosis does not change
monotonically according to the increase of the “difference”
between peaks of the standard and input patterns. In such a
case, it is impossible to precisely detect the “difference”
between peaks of the power spectrum of the standard sound
and the power spectrum of the input sound, thus it is
impossible to precisely detect an abnormal sound. The
following is a detailed description.

The upper and middle diagrams of FIGS. 54(a) to 54(d)
show a typical example where peak positions of the standard
and input patterns shown in FIGS. 53(a) to 53(d) are moved
to the left. Also, the bottom diagrams of FIGS. 54(a) to 54(d)
show an example where a difference in shapes between the
standard and input patterns is replaced by the shape change
in the reference pattern having the normal distribution as its
initial shape. Note that the peaks of the standard and input
patterns shown in FIGS. 54(a) to 54(d) are assumed to have
the same height, and the area of each standard pattern and
each input pattern shown in FIGS. 54(a) to 54(e) is equal to
1.

FIG. 54(a) gives an example of the case where standard
pattern and input pattern have the same shape. Because
the reference pattern does not change in its shape from
the normal distribution during this time, the kurtosis
becomes A=3.

FIGS. 54(b), 54(c) and 54(d) respectively show an
example exhibiting a small, medium, and large “dif-
ference” of peaks between the standard and input
patterns. During this time, the component value of the
reference pattern decreases by the absolute value of the
difference between the component value of the standard
pattern and the component value of the input pattern at
peak position of each standard pattern. At the same
time, the component value of the reference pattern
increases by the absolute value of the difference
between the component value of the standard pattern
and the component value of the input pattern at peak
position of each input pattern.

In FIG. 54(b), the position of the decreased component
value of the reference pattern and that of the increased
component value of the reference pattern are close.
Because the effect of a decrease and an increase is
cancelled out, the kurtosis becomes A=~3.
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In FIG. 54(c), because the shape of the reference pattern
has peakedness relative to the normal distribution, the
kurtosis becomes A>>3.

In FIG. 54(d), the position of the decreased component
value of the reference pattern and that of the increased
component value of the reference pattern are symmetri-
cal about the center axis of the reference pattern.
Because the effects of a decrease and an increase are
cancelled out, the kurtosis becomes A=3.

Therefore, from FIGS. 54(a) to 54(d), we can understand
that it happens that the value of the kurtosis does not change
monotonically as the “difference” between peaks of the
standard and input patterns increases.

FIG. 53 shows a case where the value of the kurtosis A
decreases monotonically as the “difference” between peaks
of the standard and input patterns increases. On the other
hand, FIG. 54 shows a case where the value of the kurtosis
A does not change monotonically when the “difference”
between peaks of the standard and input patterns increases.
From FIGS. 53 and 54, we can understand that such a
difference is caused by a relative positional relationship
between the reference pattern and the standard and input
patterns. In the prior arts, the variable of the kurtosis is
calculated while moving the center of the reference pattern
to every component position of the standard and input
patterns, and the kurtosis geometric distance value is calcu-
lated by using all the variables calculated. Thus, during the
moving of the center of the reference pattern, a phenomenon
occurs that the relative positional relationship between the
reference pattern and the standard and input patterns
becomes the same as that shown in FIG. 54, thus it is
impossible to precisely detect an abnormal sound.

Here, with regard to the typical example shown in FIG.
53, we consider that the difference in shapes between the
standard and input patterns is replaced by the shape change
in the reference pattern having the normal distribution as its
initial shape, and the magnitude of this shape change is
numerically evaluated as a variable of the “skewness”.

FIG. 53(a) gives an example of the case where standard
pattern and input pattern have the same shape. During
this time, because the reference pattern does not change
in its shape from the normal distribution (the reference
pattern is symmetrical about the center axis of the
reference pattern), the skewness becomes B=0.

In FIG. 53(b), because the position of the decreased
component value of the reference pattern is located at
the center axis and the position of the increased com-
ponent value of the reference pattern is close to the
center, the skewness becomes B=0.

In FIG. 53(d), because the tail on the right side of the
shape of the reference pattern is longer than the left
side, the skewness becomes B>>0.

In FIG. 53(c), because the shape of the reference pattern
is an intermediate state between FIG. 53(b) and FIG.
53(d), the skewness becomes B>0.

Therefore, from FIGS. 53(a) to 53(d), we can understand
that the value of the skewness increases monotonically as
the “difference” between peaks of the standard and input
patterns increases.

In FIG. 53(e), the reference pattern has a small shape
change from the normal distribution (the reference
pattern is almost symmetrical about the center axis of
the reference pattern), because the component values of
the reference pattern increase and decrease alternately
by the absolute value of the difference between the
component value of the standard pattern and the com-
ponent value of the input pattern. The skewness
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becomes B=0. Also, if the component values of the
reference pattern increase and decrease randomly, the
skewness becomes B=0.

From the above description, it is discovered that we can
detect the degree of similarity between the standard and
input patterns as a skewness geometric distance by numeri-
cally evaluating the magnitude of the shape change in the
reference pattern as a variable of the “skewness”, instead of
numerically evaluating the magnitude of the shape change in
the reference pattern as a variable of the “kurtosis”. Simi-
larly to the “kurtosis” in the prior arts, we can use the
“skewness”.

Moreover, with regard to the typical example shown in
FIG. 54, we consider that the difference in shapes between
the standard and input patterns is replaced by the shape
change in the reference pattern having the normal distribu-
tion as its initial shape, and the magnitude of this shape
change is numerically evaluated as a variable of the “skew-
ness”.

FIG. 54(a) gives an example of the case where standard
pattern and input pattern have the same shape. During
this time, because the reference pattern does not change
in its shape from the normal distribution (the reference
pattern is symmetrical about the center axis of the
reference pattern), the skewness becomes B=0.

In FIG. 54(b), the position of the decreased component
value of the reference pattern and that of the increased
component value of the reference pattern are close.
Because the effects of a decrease and an increase are
cancelled out, the skewness becomes B=0.

In FIG. 54(d), because the tail on the right side of the
shape of the reference pattern is longer than the left
side, the skewness becomes B>>0.

In FIG. 54(c), because the shape of the reference pattern
is an intermediate state between FIG. 54(b) and FIG.
54(d), the skewness becomes B>0.

Therefore, from FIGS. 54(a) to 54(d), we can understand
that the value of the skewness increases monotonically as
the “difference” between peaks of the standard and input
patterns increases.

From the above description, with regard to the typical
example shown in FIG. 54, similarly to FIG. 53, it is
discovered that we can detect the degree of similarity
between the standard and input patterns as a skewness
geometric distance by numerically evaluating the magnitude
of the shape change in the reference pattern as a variable of
the “skewness”, instead of numerically evaluating the mag-
nitude of the shape change in the reference pattern as a
variable of the “kurtosis™. Similarly to the “kurtosis” in the
prior arts, we can use the “skewness”.

Further, with regard to the typical example shown in FIG.
55, we consider that the difference in shapes between the
standard and input patterns is replaced by the shape change
in the reference pattern having the normal distribution as its
initial shape, and the magnitude of this shape change is
numerically evaluated as a variable of the “kurtosis” and a
variable of the “skewness”. The upper and middle diagrams
of FIGS. 55(a) to 55(e) show a typical example of the shapes
of the standard and input pattern vectors. FIG. 55(a) shows
the standard and input patterns having a single peak at the
center. FIGS. 55(b), 55(c) and 55(d) show the standard
patterns having a single peak at the center and the input
patterns having two peaks at symmetrical positions about the
center axis. Also, the bottom diagrams of FIGS. 55(a) to
55(d) show an example where a difference in shapes
between the standard and input patterns is replaced by the
shape change in the reference pattern having the normal
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distribution as its initial shape. Note that the peaks of the
standard and input patterns shown in FIG. 55(a) are assumed
to have the same height, and the area of each standard
pattern and each input pattern shown in FIGS. 55(a) to 55(e)
is equal to 1.

FIG. 55(a) gives an example of the case where standard
pattern and input pattern have the same shape. Because
the reference pattern does not change in its shape from
the normal distribution during this time, the kurtosis
becomes A=3.

Also, because the reference pattern is symmetrical about
the center axis of the reference pattern, the skewness
becomes B=0.

FIGS. 55(b), 55(c¢) and 55(d) respectively show an
example exhibiting standard patterns having a single
peak at the center and input patterns having a small,
medium, and large “difference” of two peaks. During
this time, the component value of the reference pattern
decreases by the absolute value of the difference
between the component value of the standard pattern
and the component value of the input pattern at peak
position of each standard pattern. At the same time, the
component value of the reference pattern increases by
the absolute value of the difference between the com-
ponent value of the standard pattern and the component
value of the input pattern at peak position of each input
pattern.

In FIG. 55(b), the position of the decreased component
value of the reference pattern and that of the increased
component value of the reference pattern are close.
Because the effects of a decrease and an increase are
cancelled out, the kurtosis becomes A=~3.

In FIG. 55(d), because the shape of the reference pattern
has flatness relative to the normal distribution, the
kurtosis becomes A<<3.

In FIG. 55(c), because the shape of the reference pattern
is an intermediate state between FIG. 55(b) and FIG.
55(d), the kurtosis becomes A<3.

In FIGS. 55(b), 55(c) and 55(d), because each reference
pattern is symmetrical about the center axis of the
reference pattern, skewness becomes B=0.

Therefore, from FIGS. 55(a) to 55(d), we can understand
that the value of the kurtosis decreases monotonically as the
“difference” between peaks of the standard and input pat-
terns increases. On the other hand, we can understand that
the value of the skewness does not change at all.

TABLE 1
Kurtosis Skewness
Instance of FIG. 53 O O
Instance of FIG. 54 X O
Instance of FIG. 55 O X

TABLE 1 shows the results of FIGS. 53 to 55. Specifi-
cally, TABLE 1 is a table showing the results of the cases of
FIGS. 53, 54 and 55. In TABLE 1, o indicates the case where
the value of the kurtosis or skewness changes monotonically
as the “difference” between peaks of the standard and input
patterns increases, while x indicates the case where the value
of the kurtosis or skewness does not change monotonically
when the “difference” between peaks of the standard and
input patterns increases. As shown in TABLE 1, when the
values of “kurtosis” and “skewness” are used for detecting
a similarity between the standard and input patterns, in the
case shown in FIG. 53, the values of the kurtosis and
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skewness both change monotonically as the “difference”
between peaks of the standard and input patterns increases.
Meanwhile, in the case shown in FIG. 54, the value of
skewness changes monotonically while a phenomenon
occurs that the value of kurtosis does not change monotoni-
cally when the “difference” between peaks of the standard
and input patterns increases. On the other hand, in the case
shown in FIG. 55, a phenomenon occurs that the value of
skewness does not change monotonically while the value of
kurtosis changes monotonically when the “difference”
between peaks of the standard and input patterns increases.

Namely, first, in the methods of the prior arts (the gazette
of Japanese Patent No. 3426905, the gazette of Japanese
Patent No. 3342864 and the gazette of Japanese Patent No.
3422787), a difference in shapes between standard and input
patterns is replaced by the shape change in a reference shape
(reference pattern) such as a normal distribution, and the
magnitude of this shape change is numerically evaluated by
using “only a variable of the kurtosis”, thus it is impossible
to precisely detect an abnormal sound.

Specifically, in the prior art (the gazette of Japanese Patent
No. 3422787), any reference shape such as a normal distri-
bution and a rectangle is created, and a reference pattern
vector having component values representing the reference
shape is created, and a kurtosis-weighting vector (a kurtosis-
weighting curve) having a value of a change rate of a
kurtosis of the above reference pattern vector as a compo-
nent is created. Then, the kurtosis-weighting curve is mul-
tiplied by positive values of weight to change the kurtosis-
weighting curve, and the optimum kurtosis-weighting curve
is calculated. In this case, consideration will be made for the
following limited case. Specifically, the functional value of
the changed kurtosis-weighting curve when u=0 becomes
positive. Further, the changed kurtosis-weighting curve
intersects the u-axis on two points and becomes symmetric
with respect to u=0. Namely, first, in the prior arts, a
kurtosis-weighted standard pattern vector and a kurtosis-
weighted input pattern vector are created by using a kurto-
sis-weighting curve that is symmetrical about the center
axis, and the degree of similarity between the standard
pattern vector and the input pattern vector is calculated as a
kurtosis geometric distance value, thus it is impossible to
precisely detect an abnormal sound.

The Description of the Gazette of Japanese Patent No.
3422787

In the above, as shown in FIG. 46B, for the case of
expanding and contracting the weighting curve in the direc-
tion parallel to the u-axis, the state has been examined,
where the geometric distance values between the standard
images are changed. Next, consideration will be made that
the weighting curve is changed also in a direction perpen-
dicular to the u-axis. However, in this embodiment, consid-
eration will be made limitedly for the following case.
Specifically, when the weighting curve is expanded and
contracted in the direction parallel to the u-axis, and simul-
taneously changed in the direction perpendicular to the
u-axis, similarly to the curve shown in FIG. 46B, the
functional value of the changed weighting curve when u=0
becomes positive. Further, the changed weighting curve
intersects the u-axis on two points and becomes symmetric
with respect to u=0.

FIG. 56 is a flowchart showing a processing procedure for
calculating the optimal weighting curve and the optimal
value of the variable Cg according to the optimal weighting
curve with regard to the case of using the geometric distance
dE as a similarity scale between the respective standard
images. In FIG. 56, in the first Step Scl, a weighting curve
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is created based on the change rate of the kurtosis of the
normal curve having a value of variance of 1, and defined as
a first (count=1) weighting curve. In Step Sc2, the first
weighting curve is multiplied by positive values of weight to
create (rated number—1) pieces of weighting curves with
weight, which are then defined as count-th (count=2 to the
rated number) weighting curves. As described above, one
weighting curve shown in FIGS. 52A to 52C can create the
plurality of weighting curves shown in FIG. 46B by expand-
ing and contracting the u-axis. Moreover, another weighting
curve shown in FIGS. 53A to 53C can create the plurality of
weighting curves shown in FIG. 49 by expanding and
contracting the u-axis. Therefore, in Step Sc1 and Step Sc2,
it is sufficient if one representative weighting curve may be
created. In Step Sc3, initial setting is made as: count=1. In
the next Step Sc4 to Step Sc8, the processing enters a loop
for calculating the optimal weighting curve and the optimal
value of the variable Cg according to the optimal weighting
curve by increasing the count one by one to: count=rated
number. Note that, for the rated number, a sufficiently large
value should be used in a range allowed by a processing time
of a computer.

The Description of Sc2 in FIG. 56 and Sd2 in FIG. 58

Multiply first weighting curve by positive values of
weight to create (rated number—1) pieces of weighting
curve with weight

Further, secondly, in the methods of the prior arts (the
gazette of Japanese Patent No. 3426905, the gazette of
Japanese Patent No. 3342864 and the gazette of Japanese
Patent No. 3422787), the variable of the kurtosis is calcu-
lated while moving the center axis of the reference pattern
to “every component position” of the standard and input
patterns, thus it is impossible to precisely detect an abnormal
sound. Specifically, in the prior art (the gazette of Japanese
Patent No. 3422787), the product-sum of a component value
of a kurtosis-weighting vector (kurtosis-weighting curve)
and component values of standard and input pattern vectors
is calculated while moving the center axis of the kurtosis-
weighting vector to “every component position” of the
standard and input patterns. Namely, during the moving of
the center axis of the kurtosis-weighting curve, the product-
sum is calculated in the same manner at every component
position without any consideration given to the relative
positional relationship between the kurtosis-weighting curve
and the standard and input patterns, and the degree of
similarity between the standard and input patterns is calcu-
lated as a kurtosis geometric distance value.

In short, first, in the prior arts, a variable of “kurtosis” and
a variable of “skewness” are both not used in a complemen-
tary manner to numerically evaluate the magnitude of the
shape change in the reference pattern, thus it is impossible
to precisely detect an abnormal sound. Moreover, secondly,
with regard to the relative positional relationship between
the reference pattern and the standard/input patterns during
the moving of the center axis of the reference pattern, the
component positions of the standard and input patterns that
improve similarity detection accuracy are not distinguished
from those that lower the similarity detection accuracy, thus
it is impossible to precisely detect an abnormal sound.

Thus, the similarity detection methods of the prior arts
(the gazette of Japanese Patent No. 3426905, the gazette of
Japanese Patent No. 3342864 and the gazette of Japanese
Patent No. 3422787) have a problem that the similarity
cannot be precisely detected and sufficiently satisfactory
accuracy for detection of an abnormal sound cannot be
obtained.
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The present invention was made to solve the above
problems and it is a first object of the present invention to
provide a method for detecting an abnormal sound, capable
of calculating an accurate geometric distance value between
an original standard pattern vector and an original input
pattern vector from the two vectors. Also, it is a second
object of the present invention to provide a method for
judging abnormality in a structure with high accuracy based
on a detected value of the abnormal sound.

Moreover, it is a third object of the present invention to
provide a method for detecting a similarity between oscil-
lation waves, capable of calculating an accurate geometric
distance value between an original standard pattern vector
and an original input pattern vector from the two vectors
with regard to a voice or any other oscillation waves.
Further, it is a fourth object of the present invention to
provide a method for recognizing a voice with high accuracy
by use of a detected value of the similarity between the
oscillation waves.

Note that the present invention provides an improved
method for calculating a geometric distance between the
original standard pattern vector (one dimension) and the
original input pattern vector (one dimension) described in
the prior arts (the gazette of Japanese Patent No. 3426905,
the gazette of Japanese Patent No. 3342864 and the gazette
of Japanese Patent No. 3422787).

Solution to Problem

In order to solve the above problems, a first aspect of the
preset invention provides a method for detecting an abnor-
mal sound, including the steps of:

(a) creating an original standard pattern vector having a
feature quantity of a standard sound as a component and an
original input pattern vector having a feature quantity of an
input sound as a component;

(b) creating any reference shape having a variance that
varies from one specified component to another of the
original pattern vector, creating a reference pattern vector
having component values representing the reference shape,
and creating a skewness-weighting vector having a rate of
change in a skewness of the reference pattern vector as a
component;

(c) obtaining a length between a specified component of
the original standard pattern vector and each of components
thereof, calculating a component number of the skewness-
weighting vector closest to a position away from the center
of the skewness-weighting vector by the length, obtaining a
product of a component value of the component number of
the skewness-weighting vector and a component value of
each component of the original standard pattern vector, and
calculating a product-sum by summing each product with
respect to a component number of the original standard
pattern vector,

(d) obtaining, in the calculation of the product-sum, the
product-sum while moving the specified component of the
original standard pattern vector to a position of each com-
ponent, and creating a skewness-weighted standard pattern
vector having the product-sum as a component value of the
specified component;

(e) obtaining a length between a specified component of
the original input pattern vector and each of components
thereof, calculating a component number of the skewness-
weighting vector closest to a position away from the center
of the skewness-weighting vector by the length, obtaining a
product of a component value of the component number of
the skewness-weighting vector and a component value of
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each component of the original input pattern vector, and
calculating a product-sum by summing each product with
respect to a component number of the original input pattern
vector;

() obtaining, in the calculation of the product-sum, the
product-sum while moving the specified component of the
original input pattern vector to a position of each compo-
nent, and creating a skewness-weighted input pattern vector
having the product-sum as a component value of the speci-
fied component;

(g) setting an angle between the skewness-weighted stan-
dard pattern vector and the skewness-weighted input pattern
vector as a skewness geometric distance between the origi-
nal standard pattern vector and the original input pattern
vector;

(h) creating a skewness-weighting vector while changing
the variance of the reference shape, obtaining a difference in
mean by subtracting a skewness geometric distance mean
between standard sounds of the same category from a
skewness geometric distance mean between standard sounds
of different categories, obtaining a square root of a sum of
values, one of which is obtained by dividing a sample
variance of the skewness geometric distance between the
standard sounds of the same category by a sample size
thereof, and the other of which is obtained by dividing a
sample variance of the skewness geometric distance
between the standard sounds of the different categories by a
sample size thereof, calculating a Welch’s test statistic as an
objective function by dividing the difference in mean by the
square root, and creating an optimum skewness-weighting
vector that maximizes the objective function;

(1) creating a skewness-weighted standard pattern vector
and a skewness-weighted input pattern vector by use of the
optimum skewness-weighting vector;

(j) creating any reference shape having a variance that
varies from one specified component to another of the
original pattern vector, creating a reference pattern vector
having component values representing the reference shape,
and creating a kurtosis-weighting vector having a rate of
change in a kurtosis of the reference pattern vector as a
component;

(k) obtaining a length between a specified component of
the original standard pattern vector and each of the compo-
nents thereof, calculating a component number of the kur-
tosis-weighting vector closest to a position away from the
center of the kurtosis-weighting vector by the length, obtain-
ing a product of a component value of the component
number of the kurtosis-weighting vector and a component
value of each component of the original standard pattern
vector, and calculating a product-sum by summing each
product with respect to a component number of the original
standard pattern vector;

(1) obtaining, in the calculation of the product-sum, the
product-sum while moving the specified component of the
original standard pattern vector to a position of each com-
ponent, and creating a kurtosis-weighted standard pattern
vector having the product-sum as a component value of the
specified component;

(m) obtaining a length between a specified component of
the original input pattern vector and each of the components
thereof, calculating a component number of the kurtosis-
weighting vector closest to a position away from the center
of the kurtosis-weighting vector by the length, obtaining a
product of a component value of the component number of
the kurtosis-weighting vector and a component value of each
component of the original input pattern vector, and calcu-
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lating a product-sum by summing each product with respect
to a component number of the original input pattern vector;

(n) obtaining, in the calculation of the product-sum, the
product-sum while moving the specified component of the
original input pattern vector to a position of each compo-
nent, and creating a kurtosis-weighted input pattern vector
having the product-sum as a component value of the speci-
fied component;

(0) setting an angle between the kurtosis-weighted stan-
dard pattern vector and the kurtosis-weighted input pattern
vector as a kurtosis geometric distance between the original
standard pattern vector and the original input pattern vector;

(p) creating a kurtosis-weighting vector while changing
the variance of the reference shape, obtaining a difference in
mean by subtracting a kurtosis geometric distance mean
between standard sounds of the same category from a
kurtosis geometric distance mean between standard sounds
of different categories, obtaining a square root of a sum of
values, one of which is obtained by dividing a sample
variance of the kurtosis geometric distance between the
standard sounds of the same category by a sample size
thereof, and the other of which is obtained by dividing a
sample variance of the kurtosis geometric distance between
the standard sounds of the different categories by a sample
size thereof, calculating a Welch’ s test statistic as an
objective function by dividing the difference in mean by the
square root, and creating an optimum kurtosis-weighting
vector that maximizes the objective function;

(q) creating a kurtosis-weighted standard pattern vector
and a kurtosis-weighted input pattern vector by use of the
optimum kurtosis-weighting vector;

(r) normalizing magnitudes of the skewness-weighted
standard pattern vector and the kurtosis-weighted standard
pattern vector to 1, and combining the normalized skewness-
weighted standard pattern vector and the normalized kurto-
sis-weighted standard pattern vector to create a dual and
weighted standard pattern vector;

(s) normalizing magnitudes of the skewness-weighted
input pattern vector and the kurtosis-weighted input pattern
vector to 1, and combining the normalized skewness-
weighted input pattern vector and the normalized kurtosis-
weighted input pattern vector to create a dual and weighted
input pattern vector;

(t) creating a selecting vector having the same number of
components as those of the dual and weighted standard
pattern vector and dual and weighted input pattern vector
and having 0 or 1 as a component, obtaining a product of a
component value of each component of the dual and
weighted standard pattern vector and a component value of
the corresponding component of the selecting vector, the
components having the same component number, and
obtaining a product of a component value of each compo-
nent of the dual and weighted input pattern vector and a
component value of the corresponding component of the
selecting vector, the components having the same compo-
nent number, thereby creating a dual and selected standard
pattern vector and a dual and selected input pattern vector
having the corresponding products as component values;

(u) setting an angle between the dual and selected stan-
dard pattern vector and the dual and selected input pattern
vector as a geometric distance between the original standard
pattern vector and the original input pattern vector;

(v) obtaining a difference in mean by subtracting a geo-
metric distance mean between standard sounds of the same
category from a geometric distance mean between standard
sounds of different categories while changing a value of each
component of the selecting vector to 0 or 1, obtaining a
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square root of a sum of values, one of which is obtained by
dividing a sample variance of the geometric distance
between the standard sounds of the same category by a
sample size thereof, and the other of which is obtained by
dividing a sample variance of the geometric distance
between the standard sounds of the different categories by a
sample size thereof, calculating a Welch’s test statistic as an
objective function by dividing the difference in mean by the
square root, and creating an optimum selecting vector that
maximizes the objective function;

(W) setting an angle between the dual and selected stan-
dard pattern vector and the dual and selected input pattern
vector, which are created by use of the optimum selecting
vector, as the geometric distance between the original stan-
dard pattern vector and the original input pattern vector.

A second aspect of the present invention provides a
method for judging abnormality in a structure, including the
steps of:

obtaining, by using the method for detecting an abnormal
sound according to the first aspect, a first geometric distance
between an original standard pattern vector having a feature
quantity of a normal standard sound as a component and an
original input pattern vector having a feature quantity of an
unknown input sound as a component and also obtaining a
second geometric distance between an original standard
pattern vector having a feature quantity of an abnormal
standard sound as a component and the original input pattern
vector;

comparing the first geometric distance and the second
geometric distance; and

judging the input sound as normal when the first geomet-
ric distance is not more than the second geometric distance
and judging the input sound as abnormal when the first
geometric distance is greater than the second geometric
distance.

Next, a third aspect of the present invention provides a
method for detecting a similarity between oscillation waves,
including the steps of:

(a) creating an original standard pattern vector having a
feature quantity of a standard oscillation wave as a compo-
nent and an original input pattern vector having a feature
quantity of an input oscillation wave as a component;

(b) creating any reference shape having a variance that
varies from one specified component to another of the
original pattern vector, creating a reference pattern vector
having component values representing the reference shape,
and creating a skewness-weighting vector having a rate of
change in a skewness of the reference pattern vector as a
component;

(c) obtaining a length between a specified component of
the original standard pattern vector and each of components
thereof, calculating a component number of the skewness-
weighting vector closest to a position away from the center
of the skewness-weighting vector by the length, obtaining a
product of a component value of the component number of
the skewness-weighting vector and a component value of
each component of the original standard pattern vector, and
calculating a product-sum by summing each product with
respect to a component number of the original standard
pattern vector,

(d) obtaining, in the calculation of the product-sum, the
product-sum while moving the specified component of the
original standard pattern vector to a position of each com-
ponent, and creating a skewness-weighted standard pattern
vector having the product-sum as a component value of the
specified component;
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(e) obtaining a length between a specified component of
the original input pattern vector and each of components
thereof, calculating a component number of the skewness-
weighting vector closest to a position away from the center
of the skewness-weighting vector by the length, obtaining a
product of a component value of the component number of
the skewness-weighting vector and a component value of
each component of the original input pattern vector, and
calculating a product-sum by summing each product with
respect to a component number of the original input pattern
vector;

(f) obtaining, in the calculation of the product-sum, the
product-sum while moving the specified component of the
original input pattern vector to a position of each compo-
nent, and creating a skewness-weighted input pattern vector
having the product-sum as a component value of the speci-
fied component;

(g) setting an angle between the skewness-weighted stan-
dard pattern vector and the skewness-weighted input pattern
vector as a skewness geometric distance between the origi-
nal standard pattern vector and the original input pattern
vector;

(h) creating a skewness-weighting vector while changing
the variance of the reference shape, obtaining a difference in
mean by subtracting a skewness geometric distance mean
between standard oscillation waves of the same category
from a skewness geometric distance mean between standard
oscillation waves of different categories, obtaining a square
root of a sum of values, one of which is obtained by dividing
a sample variance of the skewness geometric distance
between the standard oscillation waves of the same category
by a sample size thereof, and the other of which is obtained
by dividing a sample variance of the skewness geometric
distance between the standard oscillation waves of the
different categories by a sample size thereof, calculating a
Welch’s test statistic as an objective function by dividing the
difference in mean by the square root, and creating an
optimum skewness-weighting vector that maximizes the
objective function;

(1) creating a skewness-weighted standard pattern vector
and a skewness-weighted input pattern vector by use of the
optimum skewness-weighting vector;

(j) creating any reference shape having a variance that
varies from one specified component to another of the
original pattern vector, creating a reference pattern vector
having component values representing the reference shape,
and creating a kurtosis-weighting vector having a rate of
change in a kurtosis of the reference pattern vector as a
component;

(k) obtaining a length between a specified component of
the original standard pattern vector and each of the compo-
nents thereof, calculating a component number of the kur-
tosis-weighting vector closest to a position away from the
center of the kurtosis-weighting vector by the length, obtain-
ing a product of a component value of the component
number of the kurtosis-weighting vector and a component
value of each component of the original standard pattern
vector, and calculating product-sum by summing each prod-
uct with respect to a component number of the original
standard pattern vector;

(1) obtaining, in the calculation of the product-sum, the
product-sum while moving the specified component of the
original standard pattern vector to a position of each com-
ponent, and creating a kurtosis-weighted standard pattern
vector having the product-sum as a component value of the
specified component;
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(m) obtaining a length between a specified component of
the original input pattern vector and each of the components
thereof, calculating a component number of the kurtosis-
weighting vector closest to a position away from the center
of the kurtosis-weighting vector by the length, obtaining a
product of a component value of the component number of
the kurtosis-weighting vector and a component value of each
component of the original input pattern vector, and calcu-
lating a product-sum by summing each product with respect
to a component number of the original input pattern vector;

(n) obtaining, in the calculation of the product-sum, the
product-sum while moving the specified component of the
original input pattern vector to a position of each compo-
nent, and creating a kurtosis-weighted input pattern vector
having the product-sum as a component value of the speci-
fied component;

(0) setting an angle between the kurtosis-weighted stan-
dard pattern vector and the kurtosis-weighted input pattern
vector as a kurtosis geometric distance between the original
standard pattern vector and the original input pattern vector;

(p) creating a kurtosis-weighting vector while changing
the variance of the reference shape, obtaining a difference in
mean by subtracting a kurtosis geometric distance mean
between standard oscillation waves of the same category
from a kurtosis geometric distance mean between standard
oscillation waves of different categories, obtaining a square
root of a sum of values, one of which is obtained by dividing
a sample variance of the kurtosis geometric distance
between the standard oscillation waves of the same category
by a sample size thereof, and the other of which is obtained
by dividing a sample variance of the kurtosis geometric
distance between the standard oscillation waves of the
different categories by a sample size thereof, calculating a
Welch’s test statistic as an objective function by dividing the
difference in mean by the square root, and creating an
optimum kurtosis-weighting vector that maximizes the
objective function;

(q) creating a kurtosis-weighted standard pattern vector
and a kurtosis-weighted input pattern vector by use of the
optimum kurtosis-weighting vector;

(r) normalizing magnitudes of the skewness-weighted
standard pattern vector and the kurtosis-weighted standard
pattern vector to 1, and combining the normalized skewness-
weighted standard pattern vector and the normalized kurto-
sis-weighted standard pattern vector to create a dual and
weighted standard pattern vector;

(s) normalizing magnitudes of the skewness-weighted
input pattern vector and the kurtosis-weighted input pattern
vector to 1, and combining the normalized skewness-
weighted input pattern vector and the normalized kurtosis-
weighted input pattern vector to create a dual and weighted
input pattern vector;

(1) creating a selecting vector having the same number of
components as those of the dual and weighted standard
pattern vector and dual and weighted input pattern vector
and having 0 or 1 as a component, obtaining a product of a
component value of each component of the dual and
weighted standard pattern vector and a component value of
the corresponding component of the selecting vector, the
components having the same component number, and
obtaining a product of a component value of each compo-
nent of the dual and weighted input pattern vector and a
component value of the corresponding component of the
selecting vector, the components having the same compo-
nent number, thereby creating a dual and selected standard
pattern vector and a dual and selected input pattern vector
having the corresponding products as component values;
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(u) setting an angle between the dual and selected stan-
dard pattern vector and the dual and selected input pattern
vector as a geometric distance between the original standard
pattern vector and the original input pattern vector;

(v) obtaining a difference in mean by subtracting a geo-
metric distance mean between standard sounds of the same
category from a geometric distance mean between standard
sounds of different categories while changing a value of each
component of the selecting vector to 0 or 1, obtaining a
square root of a sum of values, one of which is obtained by
dividing a sample variance of the geometric distance
between the standard sounds of the same category by a
sample size thereof, and the other of which is obtained by
dividing a sample variance of the geometric distance
between the standard sounds of the different categories by a
sample size thereof, calculating a Welch’s test statistic as an
objective function by dividing the difference in mean by the
square root, and creating an optimum selecting vector that
maximizes the objective function;

(w) setting an angle between the dual and selected stan-
dard pattern vector and the dual and selected input pattern
vector, which are created by use of the optimum selecting
vector, as the geometric distance between the original stan-
dard pattern vector and the original input pattern vector.

A fourth aspect of the present invention provides a
method for recognizing a voice, including the steps of:

obtaining, by using the method for detecting a similarity
between oscillation waves according to the third aspect, a
first geometric distance between an original standard pattern
vector having a feature quantity of a standard voice of
category 1 as a component and an original input pattern
vector having a feature quantity of an unknown input voice
as a component and also obtaining a second geometric
distance between an original standard pattern vector having
a feature quantity of a standard voice of category 2 as a
component and the original input pattern vector;

comparing the first geometric distance and the second
geometric distance; and

judging that the input voice belongs to category 1 when
the first geometric distance is not more than the second
geometric distance and judging that the input voice belongs
to category 2 when the first geometric distance is greater
than the second geometric distance.

Advantageous Effects of Invention

In the method for detecting an abnormal sound according
to the present invention, the skewness-weighted standard
pattern vector, skewness-weighted input pattern vector, kur-
tosis-weighted standard pattern vector and kurtosis-
weighted input pattern vector are created by using the
optimized skewness-weighting vector and kurtosis-weight-
ing vector. Next, the magnitudes of the skewness-weighted
standard pattern vector and the kurtosis-weighted standard
pattern vector are normalized to 1, and the skewness-
weighted standard pattern vector and the kurtosis-weighted
standard pattern vector, which are obtained by the normal-
ization, are combined to create a dual and weighted standard
pattern vector. Similarly, the magnitudes of the skewness-
weighted input pattern vector and the kurtosis-weighted
input pattern vector are normalized to 1, and the skewness-
weighted input pattern vector and the kurtosis-weighted
input pattern vector, which are obtained by the normaliza-
tion, are combined to create a dual and weighted input
pattern vector. Further, the dual and selected standard pattern
vector and the dual and selected input pattern vector are
created by selecting the component values that improve the
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similarity detection accuracy and excluding the component
values that lower the similarity detection accuracy (setting
the component values to 0) in the above dual and weighted
standard pattern vector and dual and weighted input pattern
vector. Then, the angle between the dual and selected
standard pattern vector and the dual and selected input
pattern vector is numerically evaluated as a geometric
distance value between the original standard pattern vector
and the original input pattern vector. Thus, an accurate
detected value of the similarity between sounds generated by
hitting a concrete structure using a hammer can be obtained.

Moreover, the method for judging abnormality in the
structure according to the present invention has an advan-
tage that judgment criteria become reliable since it is judged
if there is abnormality, based on an accurate detected value
of the abnormal sound, and the accuracy of detecting abnor-
mality in the structure can be significantly improved.

Further, in the method for detecting a similarity between
oscillation waves according to the present invention, the
skewness-weighted standard pattern vector, skewness-
weighted input pattern vector, kurtosis-weighted standard
pattern vector and kurtosis-weighted input pattern vector are
created by using the optimized skewness-weighting vector
and kurtosis-weighting vector. Next, the magnitudes of the
skewness-weighted standard pattern vector and the kurtosis-
weighted standard pattern vector are normalized to 1, and
the skewness-weighted standard pattern vector and the kur-
tosis-weighted standard pattern vector, which are obtained
by the normalization, are combined to create a dual and
weighted standard pattern vector. Similarly, the magnitudes
of the skewness-weighted input pattern vector and the
kurtosis-weighted input pattern vector are normalized to 1,
and the skewness-weighted input pattern vector and the
kurtosis-weighted input pattern vector, which are obtained
by the normalization, are combined to create a dual and
weighted input pattern vector. Further, the dual and selected
standard pattern vector and the dual and selected input
pattern vector are created by selecting the component values
that improve the similarity detection accuracy and excluding
the component values that lower the similarity detection
accuracy (setting the component values to 0) in the above
dual and weighted standard pattern vector and dual and
weighted input pattern vector. Then, the angle between the
dual and selected standard pattern vector and the dual and
selected input pattern vector is numerically evaluated as a
geometric distance value between the original standard
pattern vector and the original input pattern vector. Thus, an
accurate detected value of the similarity can be obtained.

Moreover, the method for recognizing a voice according
to the present invention has an advantage that judgment
criteria become reliable since voice recognition is performed
based on an accurate detected value of the similarity, and the
accuracy of the voice recognition can be significantly
improved.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram showing a configuration of a
measurement apparatus for an abnormal sound in one
embodiment of the present invention.

FIG. 2 is a graph showing one example of a frequency
gain characteristic of a group of band-pass filters.

FIG. 3 is a set of graphs showing one example of power
spectra of standard and input sounds.

FIG. 4 is a set of graphs showing one example of shapes
of standard and input pattern vectors, and normal curves and
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shapes of positive and negative reference pattern vectors
whose component values obey the distribution of the normal
curve.

FIG. 5 is a set of graphs showing a typical example of
shapes of standard and input patterns, and shape changes in
positive and negative reference pattern vectors.

FIG. 6 is a set of graphs showing an example of shape
changes in positive and negative reference pattern vectors
according to a movement of a center axis of a normal
distribution.

FIG. 7(a) is a set of graphs showing an example of a shape
of a standard pattern and shapes of input patterns having
different peaks from the standard pattern. FIG. 7(b) is a set
of graphs showing an example of a shape of a standard
pattern, shapes of input patterns where a “wobble” occurs in
the shape of the standard pattern and a shape of an input
pattern having a single peak.

FIG. 8(a) is a graph showing an experimental result of
skewness geometric distance in Experiment Example 1 with
respect to the standard and input patterns shown in FIG.
7(a). FIG. 8(b) is a graph showing an experimental result of
skewness geometric distance in Experiment Example 1 with
respect to the standard and input patterns shown in FIG.
7(b).

FIG. 9(a) is a graph showing an experimental result of
kurtosis geometric distance in Experiment Example 2 with
respect to the standard and input patterns shown in FIG.
7(a). FIG. 9(b) is a graph showing an experimental result of
kurtosis geometric distance in Experiment Example 2 with
respect to the standard and input patterns shown in FIG.
7(b).

FIG. 10 is a set of graphs showing a shape of a standard
pattern and shapes of input patterns for Experiment Example
3.

FIG. 11 is a graph showing an experimental result of
skewness geometric distance in Experiment Example 3 with
respect to the standard and input patterns shown in FIG. 10.

FIG. 12 is a graph showing an experimental result of
kurtosis geometric distance in Experiment Example 3 with
respect to the standard and input patterns shown in FIG. 10.

FIG. 13 is a set of graphs showing a shape of a standard
pattern and shapes of input patterns for Experiment Example
4.

FIG. 14 is a graph showing an experimental result of
skewness geometric distance in Experiment Example 4 with
respect to the standard and input patterns shown in FIG. 13.

FIG. 15 is a graph showing an experimental result of
kurtosis geometric distance in Experiment Example 4 with
respect to the standard and input patterns shown in FIG. 13.

FIG. 16 is a set of graphs showing a change in a skewness
when only a single bar increases in height by value 6.

FIG. 17 is a set of graphs showing a change in a skewness
when two bars increase in height by the same value 0
simultaneously.

FIG. 18 is a set of graphs showing a change in a skewness
when only one bar increases in height by value § and another
bar increases in height by value 0.2 at the same time.

FIG. 19 is a set of graphs showing shapes of a reference
pattern vector and a skewness-weighting vector.

FIG. 20(a) is a graph showing an experimental result of
skewness geometric distance in Experiment Example 5 with
respect to the standard and input patterns shown in FIG.
7(a). FIG. 20(b) is a graph showing an experimental result
of skewness geometric distance in Experiment Example 5
with respect to the standard and input patterns shown in FI1G.
7(b).
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FIG. 21 is a schematic diagram of the m-dimensional
pattern space.

FIG. 22 is a set of graphs showing a method for sharing
a skewness-weighting vector.

FIG. 23 is a block diagram showing a flowchart for
calculating a skewness geometric distance.

FIG. 24 is a schematic diagram showing a method for
creating a skewness-weighted standard pattern vector and a
skewness-weighted input pattern vector by using product-
sum operation.

FIG. 25(a) is a block diagram showing a flowchart for
directly calculating a skewness geometric distance during
the input pattern recognition process. FIG. 25(5) is a block
diagram showing a flowchart for calculating an approximate
value of a skewness geometric distance during the input
pattern recognition process.

FIG. 26(a) is a graph showing an experimental result of
skewness geometric distance in Experiment Example 6 with
respect to the standard and input patterns shown in FIG.
7(a). FIG. 26(b) is a graph showing an experimental result
of skewness geometric distance in Experiment Example 6
with respect to the standard and input patterns shown in FI1G.
7(b).

FIG. 27 is a set of graphs showing shapes of a reference
pattern vector and a kurtosis-weighting vector.

FIG. 28 is a set of graphs showing a method for sharing
a kurtosis-weighting vector.

FIG. 29 is a block diagram showing a flowchart for
calculating a kurtosis geometric distance.

FIG. 30 is a schematic diagram showing a method for
creating a kurtosis-weighted standard pattern vector and a
kurtosis-weighted input pattern vector by using product-sum
operation.

FIG. 31(a) is a block diagram showing a flowchart for
directly calculating a kurtosis geometric distance during the
input pattern recognition process. FIG. 31(b) is a block
diagram showing a flowchart for calculating an approximate
value of a kurtosis geometric distance during the input
pattern recognition process.

FIG. 32(a) is a graph showing an experimental result of
kurtosis geometric distance in Experiment Example 7 with
respect to the standard and input patterns shown in FIG.
7(a). FIG. 32(b) is a graph showing an experimental result
of kurtosis geometric distance in Experiment Example 7
with respect to the standard and input patterns shown in FI1G.
7(b).

FIG. 33 is a set of graphs showing the influence of a value
of variance of a normal distribution on the accuracy of
detecting a similarity between skewness geometric dis-
tances.

FIG. 34 is a set of graphs showing an example of a shape
change in a reference pattern vector when the center axis of
a normal distribution is moved.

FIG. 35 is a set of graphs showing two examples of a
normal sound power spectrum and two examples of an
abnormal sound power spectrum.

FIG. 36 is a schematic graph showing a frequency dis-
tribution of distances between standard sounds of different
categories and a frequency distribution of distances between
standard sounds of the same category.

FIG. 37 is a diagram showing processing procedures for
obtaining an optimum value ws.

FIG. 38 is a graph showing a calculation result of a test
statistic T by Experiment Example 8.

FIG. 39 is a set of graphs showing the influence of a value
of variance of a normal distribution on the accuracy of
detecting a similarity between kurtosis geometric distances.
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FIG. 40 is a set of graphs showing an example of a shape
change in a reference pattern vector when the center axis of
a normal distribution is moved.

FIG. 41 is a diagram showing processing procedures for
obtaining an optimum value wk.

FIG. 42 is a graph showing a calculation result of a test
statistic T by Experiment Example 9.

FIG. 43 is a diagram showing a calculation flowchart for
creating a dual and weighted standard pattern vector.

FIG. 44 is a diagram showing a method for creating a
skewness-weighted standard pattern vector and a kurtosis-
weighted standard pattern vector by product-sum operation.

FIG. 45 is a diagram showing a calculation flowchart for
creating a dual and weighted input pattern vector.

FIG. 46 is a diagram showing a method for creating a
skewness-weighted input pattern vector and a kurtosis-
weighted input pattern vector by product-sum operation.

FIG. 47 is a diagram showing a calculation flowchart for
a geometric distance dA.

FIG. 48 is a diagram showing a flowchart for obtaining an
optimum selecting vector.

FIG. 49 is a diagram showing processing procedures for
recognizing an unknown input sound when the number of
categories is 2.

FIG. 50 is a diagram showing processing procedures for
recognizing an unknown input sound when the number of
categories is 3 or more.

FIG. 51 is a diagram showing combinations of categories
1 to 4.

FIG. 52 is a diagram showing generalized processing
procedures for recognizing an unknown input sound when
the number of categories is L (L<3).

FIG. 53 is a set of graphs showing, with regard to the prior
arts, typical examples of a standard pattern shape and an
input pattern shape as well as shape changes in a reference
pattern vector in those typical examples.

FIG. 54 is a set of graphs showing, with regard to the prior
arts, typical examples where the positions of peaks of the
standard pattern shape and input pattern shape in FIG. 53 are
shifted to the left, as well as shape changes in a reference
pattern vector in those typical examples.

FIG. 55 is a set of graphs showing, with regard to the prior
arts, other typical examples of a standard pattern shape and
an input pattern shape as well as shape changes of a
reference pattern vector in those typical examples.

DESCRIPTION OF EMBODIMENTS

Hereinafter, embodiments of the present invention will be
described.

{Description of Principles}

As for a method for calculating a new geometric distance
value between an original standard pattern vector (one
dimension) and an original input pattern vector (one dimen-
sion) by use of a normal distribution as a reference shape, the
principles of the present invention will be described.

In the prior arts, first, a difference in shapes between
standard and input patterns is replaced by a shape change in
the reference shape (reference pattern) such as the normal
distribution, and the magnitude of this shape change is
numerically evaluated as a variable of “kurtosis”. Then, the
variable of “kurtosis” is obtained while moving the center
axis of the reference pattern to each component position of
the standard and input patterns, and the degree of similarity
between the standard pattern and the input pattern is
detected as a distance value by using these variables.
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In the present invention, first, a difference in shapes
between standard and input patterns is replaced by a shape
change in the reference shape (reference pattern) such as the
normal distribution, and the magnitude of this shape change
is numerically evaluated as a variable of “skewness”. Then,
the variable of “skewness” is obtained while moving the
center axis of the reference pattern to each component
position of the standard and input patterns, and the degree of
similarity between the standard pattern and the input pattern
is detected as a distance value by using these variables.

Namely, this embodiment shows that, even when the
magnitude of the shape change in the reference pattern is
numerically evaluated as the variable of “skewness” instead
of the method of the prior art wherein the magnitude of the
shape change in the reference pattern is numerically evalu-
ated as the variable of “kurtosis”, the degree of similarity
between the standard pattern and the input pattern can be
detected as the distance value as in the case of the prior arts.

In the prior arts, secondly, a reference pattern vector
whose component values are normally distributed is created,
and a kurtosis-weighting vector having a value of a change
rate of “kurtosis” of the above reference pattern vector as a
component is created in advance. Then, as for an original
standard pattern vector created without normalizing a power
spectrum pattern of a sound, the product-sum of a compo-
nent value of the kurtosis-weighting vector and a component
value of the original standard pattern vector is calculated. In
this case, a kurtosis-weighted standard pattern vector is
created by obtaining the product-sum while moving the
center axis of the kurtosis-weighting vector to each compo-
nent position of the original standard pattern vector. Simi-
larly, as for an original input pattern vector created without
normalizing a power spectrum pattern of a sound, the
product-sum of a component value of the kurtosis-weighting
vector and a component value of the original input pattern
vector is calculated. In this case, a kurtosis-weighted input
pattern vector is created by obtaining the product-sum while
moving the center axis of the kurtosis-weighting vector to
each component position of the original input pattern vector.
Then, an angle between the above kurtosis-weighted stan-
dard pattern vector and the kurtosis-weighted input pattern
vector is set as a kurtosis geometric distance value between
the original standard pattern vector and the original input
pattern vector.

In the present invention, secondly, a reference pattern
vector whose component values are normally distributed is
created, and a skewness-weighting vector having a value of
a change rate of “skewness” of the above reference pattern
vector as a component is created in advance. Then, as for an
original standard pattern vector created without normalizing
a power spectrum pattern of a sound, the product-sum of a
component value of the skewness-weighting vector and a
component value of the original standard pattern vector is
calculated. In this case, a skewness-weighted standard pat-
tern vector is created by obtaining the product-sum while
moving the center axis of the skewness-weighting vector to
each component position of the original standard pattern
vector. Similarly, as for an original input pattern vector
created without normalizing a power spectrum pattern of a
sound, the product-sum of a component value of the skew-
ness-weighting vector and a component value of the original
input pattern vector is calculated. In this case, a skewness-
weighted input pattern vector is created by obtaining the
product-sum while moving the center axis of the skewness-
weighting vector to each component position of the original
input pattern vector. Then, an angle between the above
skewness-weighted standard pattern vector and the skew-
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ness-weighted input pattern vector is set as a skewness
geometric distance value between the original standard
pattern vector and the original input pattern vector.

Namely, this embodiment shows that, even when the
skewness-weighting vector having a value of a change rate
of “skewness” of the reference pattern vector as a compo-
nent is used instead of the method of the prior art using the
kurtosis-weighting vector having a value of a change rate of
“kurtosis” of the reference pattern vector as a component,
the degree of similarity between the original standard pattern
vector and the original input pattern vector can be detected
as a skewness geometric distance value as in the case of the
prior arts.

After showing the above first and second methods, in the
present invention, a skewness-weighted standard pattern
vector, a skewness-weighted input pattern vector, a kurtosis-
weighted standard pattern vector and a kurtosis-weighted
input pattern vector are created by using the skewness-
weighting vector and kurtosis-weighting vector. Next, the
skewness-weighted standard pattern vector and the kurtosis-
weighted standard pattern vector are combined to create a
dual and weighted standard pattern vector. Similarly, the
skewness-weighted input pattern vector and the kurtosis-
weighted input pattern vector are combined to create a dual
and weighted input pattern vector. Further, a dual and
selected standard pattern vector and a dual and selected
input pattern vector are created by selecting a component
value that improves the similarity detection accuracy and
excluding a component value that lowers the similarity
detection accuracy (setting the component value to 0) in the
above dual and weighted standard pattern vector and dual
and weighted input pattern vector. Then, an angle between
the dual and selected standard pattern vector and the dual
and selected input pattern vector is set as a geometric
distance value between the original standard pattern vector
and the original input pattern vector.

Namely, a method for detecting an abnormal sound is
provided, capable of obtaining an accurate geometric dis-
tance value between the original standard pattern vector and
the original input pattern vector by selecting the component
value that improves the similarity detection accuracy and
excluding the component value that lowers the similarity
detection accuracy (setting the component value to 0) in the
dual and weighted standard/input pattern vectors, in order to
distinguish the component positions of the standard and
input patterns that improve the similarity detection accuracy
from those that lower the similarity detection accuracy with
regard to the relative positional relationship between the
reference pattern and the standard and input patterns as
shown in the examples of FIGS. 53 to 55 while increasing
an information amount by use of “skewness” and “kurtosis”
in a complementary manner.

To be more specific, an angle between the skewness-
weighted standard pattern vector and the skewness-weighted
input pattern vector is set as a skewness geometric distance
value between the original standard pattern vector and the
original input pattern vector. Next, a skewness-weighting
vector is created while changing the value of variance of the
normal distribution, and a value of a difference in mean is
obtained by subtracting a skewness geometric distance mean
between standard sounds of the same category from a
skewness geometric distance mean between standard sounds
of the different categories. Then, we obtain the square root
of'the sum of a value obtained by dividing a sample variance
of the skewness geometric distance between the standard
sounds of the different categories by the sample size and a
value obtained by dividing a sample variance of the skew-
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ness geometric distance between the standard sounds of the
same category by the sample size. Thereafter, a Welch’ s test
statistic is calculated as a value of an objective function by
dividing the above value of the difference in mean by the
square root, and an optimum skewness-weighting vector that
maximizes the value of the objective function is created.
Then, a skewness-weighted standard pattern vector and a
skewness-weighted input pattern vector are created by use of
the above optimum skewness-weighting vector.

Similarly, an angle between the kurtosis-weighted stan-
dard pattern vector and the kurtosis-weighted input pattern
vector are set as a kurtosis geometric distance value between
the original standard pattern vector and the original input
pattern vector. Next, a kurtosis-weighting vector is created
while changing the value of variance of the normal distri-
bution, and a value of a difference in mean is obtained by
subtracting a kurtosis geometric distance mean between
standard sounds of the same category from a kurtosis
geometric distance mean between standard sounds of the
different categories. Then, we obtain the square root of the
sum of a value obtained by dividing a sample variance of the
kurtosis geometric distance between the standard sounds of
the different categories by the sample size and a value
obtained by dividing a sample variance of the kurtosis
geometric distance between the standard sounds of the same
category by the sample size. Thereafter, a Welch’ s test
statistic is calculated as a value of an objective function by
dividing the above value of the difference in mean by the
square root, and an optimum kurtosis-weighting vector that
maximizes the value of the objective function is created.
Then, a kurtosis-weighted standard pattern vector and a
kurtosis-weighted input pattern vector are created by use of
the above optimum kurtosis-weighting vector.

Further, the magnitudes of the above skewness-weighted
standard pattern vector and the above kurtosis-weighted
standard pattern vector are each normalized to 1, and the
normalized skewness-weighted standard pattern vector and
the normalized kurtosis-weighted standard pattern vector are
combined to create a dual and weighted standard pattern
vector.

Similarly, the magnitudes of the above skewness-
weighted input pattern vector and the above kurtosis-
weighted input pattern vector are each normalized to 1, and
the normalized skewness-weighted input pattern vector and
the normalized kurtosis-weighted input pattern vector are
combined to create a dual and weighted input pattern vector.

Next, a selecting vector is created, having the same
number of components as those of the above dual and
weighted standard pattern vector and dual and weighted
input pattern vector and having 0 or 1 as a component, and
we obtain a value of the product of component values, one
of which is taken from the dual and weighted standard
pattern vector or the dual and weighted input pattern vector,
and the other of which is from the above selecting vector,
both component values having the same component number.
Then, a dual and selected standard pattern vector and a dual
and selected input pattern vector having the above value of
the product as a component value are created. Thereafter, an
angle between the above dual and selected standard pattern
vector and the above dual and selected input pattern vector
is set as a geometric distance value between the original
standard pattern vector and the original input pattern vector.

Further, a value of a difference in mean is obtained by
subtracting a geometric distance mean between standard
sounds of the same category from a geometric distance mean
between standard sounds of the different categories while
changing the value of each component of the selecting



US 9,552,831 B2

25

vector to 0 or 1. Then, we obtain the square root of the sum
of a value obtained by dividing a sample variance of the
geometric distance between the standard sounds of the
different categories by the sample size and a value obtained
by dividing a sample variance of the geometric distance
between the standard sounds of the same category by the
sample size. Thereafter, a Welch’ s test statistic is calculated
as a value of an objective function by dividing the above
value of the difference in mean by the square root, and an
optimum selecting vector that maximizes the value of the
objective function is created.

Lastly, an angle between the dual and selected standard
pattern vector and the dual and selected input pattern vector,
which are created by use of the above optimum selecting
vector, is detected as a geometric distance value between the
original standard pattern vector and the original input pattern
vector.

Such a geometric distance value accurately detects a
vector shape change between a standard sound (or a standard
oscillation wave in the structure) and an input sound (or an
input oscillation wave in the structure), and also accurately
detects a similarity between any standard oscillation wave
such as a standard voice and any input oscillation wave such
as an input voice.

Therefore, a shape change between the original standard
pattern vector and the original input pattern vector can be
accurately detected by judging if there is abnormality in the
structure by use of the geometric distance value thus
obtained. Accordingly, the accuracy of detecting abnormal-
ity in the structure can be significantly improved. Moreover,
the shape change between the original standard pattern
vector and the original input pattern vector can be accurately
detected by performing voice recognition using such a
geometric distance value. Thus, the accuracy of voice rec-
ognition can be significantly improved.

Note that the above description holds true even when the
objective functions for obtaining the optimum skewness-
weighting vector, optimum kurtosis-weighting vector and
optimum selecting vector are statistics other than Welch’s
test statistic or an abnormal sound recognition rate, a voice
recognition rate or the like.

[Embodiment]

Now, referring to the drawings, an embodiment will be
described. In the embodiment, for distinguishing an abnor-
mal sound generated by hitting a concrete structure using a
hammer from a normal sound, standard and input pattern
vectors are created using frequency distributions of standard
and input sounds, respectively. Further, a difference in
shapes between these vectors is replaced by a shape change
in a reference pattern vector whose component values are
normally distributed, and the magnitude of this shape
change is numerically evaluated as a variable of the “skew-
ness” and a variable of the “kurtosis”. Then, the abnormal
sound is detected based on these variables, and abnormality
in the structure is judged by use of the detected value.

Therefore, in this embodiment, first of all, we show that
we can detect the degree of similarity between the standard
and input patterns as a distance by numerically evaluating
the magnitude of the shape change in the reference pattern
as a variable of the “skewness”, instead of numerically
evaluating the magnitude of the shape change in the refer-
ence pattern as a variable of the “kurtosis”. Similarly to the
“kurtosis” in the prior arts, we can use the “skewness”.

FIG. 1 shows a configuration of a measurement apparatus
for detecting an abnormal sound. In FIG. 1, 1 denotes a
target structure to be inspected, and 2 denotes a microphone.
The microphone 2 is set at a predetermined position near the
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structure 1. The microphone 2 measures a sound wave
generated by hitting the structure 1 using a hammer and
outputs its signal. The signal from the microphone 2 is input
to m band-pass filters 3 having different passbands fl to fm.
Then each sound wave signal, having a frequency compo-
nent corresponding to each band-pass filter 3, is extracted
and given to each analog to digital converter (A/D con-
verter) 4. These signals are converted at same time and
periodically to digital signals, respectively, and given to a
processor 5 such as a computer. The processor 5 is con-
structed to detect an abnormal sound based on the output
signal from the microphone 2 as mentioned below. The i-th
(i=1,2,...,m)band-pass filter 3 is set at a central frequency
fi and the output signal of the i-th band-pass filter 3 is input
to an i-th A/D converter 4.

Next, processing procedures for detecting the abnormal
sound by using the measuring apparatus shown in FIG. 1 are
described. While many kinds of methods for extracting a
power spectrum of a sound wave have been developed, in
this embodiment, a method using a group of analog band-
pass filters is employed because the method has been used
for a long time and a performance of the method is stable.
FIG. 2 shows an example of a frequency gain characteristic
of the group of band-pass filters 3. In FIG. 2, a frequency
component having a band, the center frequency of which is
fi, is extracted by inputting the sound wave signal into the
i-th band-pass filter. Then, by setting each band-pass filter in
this manner, it is possible to extract a feature of a frequency
distribution of the sound wave.

As shown in FIG. 1, assuming that the output signal from
the i-th A/D converter 4 is wi(t) (i=1, 2, . . . m) as a function
of time t, the function wi(t) is a frequency component of the
sound wave extracted by the i-th band-pass filter 3. There-
fore, a power spectrum Pi of the i-th frequency band is
calculated by the following equation 1, wherein any time
length T for calculating a sum of the function wi(t)’s squared
is set so that a change with time in a feature of the sound
wave may significantly appear.

T {Equation 1}
Pi= 3 {wm)
t=0

(=1,23...,m

FIG. 3 gives an example of the power spectra of standard
and input sounds. Here, we create an original standard
pattern vector so having the power spectrum value Pi (i=1,
2, ..., m) of the standard sound as a component value soi
(i=1, 2, . . ., m) and an original input pattern vector Xo
having the power spectrum value Pi (i=1, 2, . . ., m) of the
input sound as a component value xoi (i=1, 2, .. . , m). We
represent them as the following equation 2.

So=(So1 So2s - -+ Soi « v vy Som)

Xo=(Kots Xo20 -+« Xop - - - {Equation 2}

Next, the component values soi and xoi are divided by the
summation of soi and the summation of xoi respectively in
equation 2, and normalized power spectra si and xi have
been calculated. Then, we create a standard pattern vector s
having si as its components, and an input pattern vector X
having xi as its components, and represent them as the
following equation 3.
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{Equation 3}

If we assign constants c¢s and cx to the summation of soi
and the summation of xoi respectively in equation 2, we can
show the relationship between component values of equa-
tions 2 and 3 as the following equation 4.

$=80i/Cs

X=X ,/C, {Equation 4}

(i=1,2,3,...,m)

Also, the component values soi and xoi are divided by the
maximum value of soi and the maximum value of xoi
respectively in equation 2, and normalized power spectra s'i
and x'i have been calculated. Then, we create a standard
pattern vector s' having s'i as its components, and an input
pattern vector X' having X'i as its components, and represent
them as the following equation 5.

{Equation 5}

If we assign constants c's and ¢'x to the maximum value
of soi and the maximum value of xoi respectively in equa-
tion 2, we can show the relationship between component
values of equations 2 and 5 as the following equation 6.

$5=85/C's

x'=x,/c", {Equation 6}

(i=1,2,3,...,m)

Equations 2, 3 and 5 express the shapes of the power
spectra of the standard sound and input sound by the m
pieces of component values of the pattern vector. Note that
in this embodiment the width of each bar graph is 1/m for
power spectrum shown in FIG. 3. The area and the maxi-
mum values usually differ between so and xo shown in
equations 2 and FIG. 3. Meanwhile, the areas of s and x
shown in equations 3 are the same and the maximum values
of ' and x' shown in equations 5 are the same.

The following equation 7 is a probability density function
of the normal distribution. Where p is mean, and o is
variance.

Fu= {Equation 7}

1 1ju—py2
L)

FIGS. 4(a) and 4(b) give an example of the shapes of the
standard pattern vector s and the input pattern vector x
shown in equation 3. Next, the difference in shapes between
standard and input patterns is replaced by the shape change
in the normal distribution, and the magnitude of this shape
change is numerically evaluated as a variable of the “skew-
ness”. However, in general, an equation for calculating the
skewness of the vector cannot be defined if the component
value of the vector is negative. Therefore, we create a pair
of reference patterns that have a normal distribution as their
initial shapes so that the change in the component value of
the vector may not decrease. FIGS. 4(c) and 4(d) show the
bar graphs (reference patterns), each having the same height
as function values r™i and ri of their normal distribution.
Here, we create a positive reference pattern vector
having r™i as its components, and a negative reference
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pattern vector r'™ having r™i as its components, and rep-
resent them as the following equation 8.

{Equation 8}

It is recognized from FIGS. 4(c) and 4(d) that a pair of the
reference pattern vectors ' and 1~ are equivalent vectors.
Equation 8 expresses the shape of a normal distribution by
the m pieces of component values of pattern vector. Note
that the number of components of equation 8 is supposed to
be equal to m, which is the number of components of
equation 3, and all bar graphs of FIGS. 4(a) to 4(d) have the
same width. Further, while in this embodiment the number
m is an odd number, the same discussion holds in case of m
being an even number. Also, as shown in FIGS. 4(c) and
4(d), the center axis of a normal distribution is assumed to
locate at the center of standard and input patterns. It is
possible to set the variance value o® of the normal distribu-
tion in any ranges which enable to express a feature of the
shape of the normal distribution by m components of the
vector. Note that, from the experiments, we found that we
can obtain the effective results when we create the reference
pattern vectors using the range of -2.10 to +2.10 of the
normal distribution. Therefore, in this embodiment, we use
the range of -2.10 to +2.10 of the normal distribution.

Next, a difference in shapes between standard pattern
vector s and input pattern vector X shown in equation 3 is
replaced by the shape changes in positive reference pattern
vector ™ and negative reference pattern vector r'~ using the
following equation 9. Note that, in equation 9, ri and ri
on the right side show the component values of positive and
negative reference pattern vectors having the shape of the
normal distribution, and those on the left side show the
components after the shape has changed. In equation 9, if
component value xi of the input pattern vector is greater than
component value si of the standard pattern vector, compo-
nent value r™)i of the positive reference pattern vector
increases by |xi—sil from the normal distribution value. Also,
if xi is smaller than si, component value r™i of the negative
reference pattern vector increases by Ixi-sil from the normal
distribution value. Thus, the values r™)i and r*”i do not
decrease in equation 9.

Fori=1,2,3,...,m;
if x;>s;, then 7, e—rMtlx—s,|

if x;>s;, then 7,V Otlx—s,| {Equation 9}

Next, we explain equation 9 using a typical example
shown in FIG. 5. FIG. 5 represents the components of the
vector as a shape of the vector by the graph. The upper and
middle diagrams of FIGS. 5(a) to 5(e) show a typical
example of the shapes of the standard and input pattern
vectors. FIGS. 5(a) to 5(d) show the standard and input
patterns having a single peak. FIGS. 5(e) schematically
shows the standard pattern having a flat shape and the input
pattern where a “wobble” occurs in the flat shape. Also, the
bottom diagrams of FIGS. 5(a) to 5(e) show an example
where a difference in shapes between the standard and input
patterns is replaced by the shape changes in a pair of
reference patterns having the normal distribution as their
initial shapes. Note that the peaks of the standard and input
patterns shown in FIGS. 5(a) to 5(d) are assumed to have the
same height, and the area of each standard pattern and each
input pattern shown in FIGS. 5(a) to 5(e) is equal to 1. Also,
note that the shape of the negative reference pattern vector
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is shown upsidedown in order to compare it with the shape
of the positive reference pattern vector.

FIG. 5(a) gives an example of the case where standard
pattern and input patterns have the same shape.
Because values r™i and r™i of equation 9 do not
change during this time, a pair of the reference patterns
shown in FIG. 5(a) do not change in their shapes from
the normal distribution.

FIGS. 5(b), 5(c) and 5(d) respectively show an example
exhibiting a small, medium, and large “difference” in
peaks between the standard and input patterns. If equa-
tion 9 is represented by the shapes, as shown in FIGS.
5(b), 5(c) and 5(d), value ri increases by the absolute
value of the difference between the component value of
the standard pattern and the component value of the
input pattern at peak position of each standard pattern.
At the same time, value r™i increases by the absolute
value of the difference between the component value of
the standard pattern and the component value of the
input pattern at peak position of each input pattern.

In FIG. 5(e), a pair of reference patterns shown in FIG.
5(e) have small shape changes from the normal distri-
bution, because values r™i and r‘”i increase alternately
by the absolute value of the difference between the
component value of the standard pattern and the com-
ponent value of the input pattern in equation 9.

While FIG. 5 shows a typical example exhibiting shapes
of the standard pattern vector and the input pattern vector, in
general, almost all parts of the input pattern vector are
changed from the shape of the standard pattern vector, and
equation 9 is used to calculate every shape change in all
changed parts. Equation 9 is adaptive to any standard pattern
vector and any input pattern vector because equation 9 deals
with a relative shape change instead of an absolute shape
change.

Next, for a pair of the reference patterns (the positive
reference pattern vector r™ and the negative reference
pattern vector r” whose shapes have been changed by
equation 9, the magnitude of shape change is numerically
evaluated as the variable of “skewness”.

The skewness B™ of the positive reference pattern vector
r™ and the skewness B of the negative reference pattern
vector r'™) can be calculated using the following equation 10,
where, Li (i=1, 2, . .. , m) in equation 10 is a deviation from
the center axis of the normal distribution as shown in FIGS.
4(c) and 4(d), and the deviation Li is set in any range which
enable to express a feature of the shape of the normal

distribution.
{ "o }{Z (Li)s'rfﬂ}
i i=1

n 3
{Z Ly 'rfﬂ}z
i=1

" }{Z &Ly -rﬁ*)}
i=1
3

mn 2

{Z (L2 -rﬁ’)}

i=1

The skewness B® and the skewness B are ratios of a
cubic moment around the center axis of the normal distri-
bution to a square root of a cube of a quadratic moment
around the center axis of the normal distribution. It is

{Equation 10}
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possible to calculate a skewness value of the normal distri-
bution and any reference shape using equation 10.

As described above, generally, it is impossible to deter-
mine a negative component of a vector in an equation for
calculating the skewness of the vector. Namely, it is neces-
sary that each component of the reference vector is not a
negative value in any relation of great and small sizes
between the standard pattern vector and the input pattern
vector. For satisfying the above condition, the positive
reference pattern vector r™ and the negative reference
pattern vector r*™ are created, wherein an initial value of the
positive vector r™ is equal to an initial value of the negative
vector ' . Equation 9 changes some components of those
vectors r™ and r™ but does not decrease any component
value of those vectors r™ and r. In equation 10, the
skewness B and the skewness B of those vectors 1™ and
™ are calculated.

Next, from a change in the skewness B of the positive
reference pattern vector r and a change in the skewness
B© of the negative reference pattern vector r*, a skewness
shape variation D is calculated by using a difference (B“”-
B)) between the skewness B™ and the skewness B,
wherein the skewness shape variation D expresses the
degree of similarity between the standard pattern vector and
the input pattern vector.

For example, a value of the skewness B™ of the positive
reference pattern vector r*™ initially created by equation 8,
is equal to 0 and a value of the skewness B of the negative
reference pattern vector r* initially created by equation 8,
is equal to 0. Therefore, a change in the skewness of the
positive reference pattern vector r'* changed by equation 9
is equal to {B®-0} and a change in the skewness of the
negative reference pattern vector r' changed by equation 9
is equal to {B“’-0}. Namely, a change in a positive direc-
tion is {B™-0} and a change in a negative direction is
{B©-0}. Then overall change is a difference {B™-0}-
{B™)-0}. By the following equation 11, the skewness shape
variation D indicating the overall shape change is calculated.

D=B®-p™ {Equation 11}

TABLE 2
FIG. 5
(@ (b) (© (d (e)
Increase of 1 B =0 B®=~0 B®>0 B¥>>0 B®=~0
Increase of ;7 B©@=0 BO=0 BO=0 BP?=0 BO=0
B® - BO D=0 D=~0 D>0 D>>0 D~0

Next, with regard to the typical example of the shapes of
the standard pattern vector and the input pattern vector
shown in FIGS. 5(a) to 5(e), we explain the value of the
skewness shape variation D calculated by equation 11.
TABLE 2 shows how D varies with r™i, rfi , B* and B,
Namely, TABLE 2 shows the changes in B®), B™ and D
when the shape of the input pattern is changed from the
shape of the standard pattern as shown in FIG. 5. From FIG.
5 and TABLE 2, we can understand the following.

In FIG. 5(a), values r*i and r*i do not change. The
sk(e;vness shape variation becomes D=0 as B®=0 and
B&=0.

In FIGS. 5(b), 5(¢) and 5(d), because peak positioni of the
standard pattern is located in the center of the negative
reference pattern vector and the shape of the negative
reference pattern vector is symmetrical about the center
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axis of the negative reference pattern vector, the skew-

ness becomes B=0 when value r*i increases.

In FIG. 5(b), because peak position i of the input pattern
is located in the area around the center of the positive
reference pattern vector, the skewness becomes B™=0
when value r™i increases. The entire skewness shape
variation becomes D=0.

In FIG. 5(d), because peak position i of the input pattern
is located in the edge part of the positive reference
pattern vector and the tail on the right side of the shape
of the positive reference pattern vector is longer than
the left side, the skewness becomes B™>>0 when
value r'*i increases. The entire skewness shape varia-

tion becomes D>>0.

In FIG. 5(c), because the shape of the positive reference
pattern vector is an intermediate state between FIG.
5(b) and FIG. 5(d), the skewness becomes B™>0. The
entire skewness shape variation becomes D>0.

In FIG. 5(e), a pair of reference patterns have small shape
changes from the normal distribution, and the skewness
shape variation becomes D=0 as B™=~0 and B=~0.
Also, if values r™i and ri increase randomly, the
skewness shape variation becomes D=0.

From FIGS. 5(a) to 5(d), we can understand that value DI
increases monotonically as the “difference” between peaks
of the standard and input patterns increases. Also, from FIG.
5(e), it is clear that D=0 for the “wobble”.

In the previous description, we have determined the
skewness shape variation D by assuming that the center axis
of the normal distribution is located at the center of standard
and input patterns as shown in FIGS. 4 and 5. Next,
however, we determine the skewness shape variation Dj for
each j in the case where the center axis of the normal
distribution moves to any component position j (=1,
2, ..., m) of the standard and input patterns. FIGS. 6(a) and
6(b) give an example of standard and input patterns. Also,
FIGS. 6(c) to 6(f) show the positive and negative reference
patterns when the center axis of the normal distribution
moves to positions 1, 3, j and m, respectively. Note that all
bar graphs of FIGS. 6(a) to 6(f) have the same width. As
shown in FIG. 6(e), the positive and negative reference
patterns do not necessarily cover the entire standard and
input patterns.

Then, we process the ends so that the sensitivity to the
“wobble” in the positive and negative reference patterns
may be equated regardless of the movement position of the
normal distribution. In the positive and negative reference
patterns shown in FIGS. 6(c) to 6(f), the “white” bars
correspond to the component numbers i of the input pattern
and, therefore, their heights change according to the
“wobble” of the input pattern. However, the “gray” bars do
not correspond to the component numbers i, and their
heights do not change. Therefore, we set value nj so that the
number of white bars may be equated in all the positive and
negative reference patterns. In FIGS. 6(c) to 6(f), for an
example, each of the positive and negative reference patterns
consists of 9 white bars. By this means, the sensitivity to the
“wobble” in the positive and negative reference patterns is
equated. We can expand equation 8 as described above to
create positive and negative reference pattern vectors rj
and 1j~ which have different variance values of the normal
distribution for each movement position j, and represent

them as the following equation 12.
=, L PR )
=, O, 1,9, L rjnj(’)) {Equation 12}
G=1,2,3 ..., m)

Then, we replace the difference in shapes between stan-
dard pattern vector s and input pattern vector x by the shape
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changes in the vectors rj™ and 1j~ by using the following
equation 13 instead of equation 9.

Fori=1,2,3,...,m;
when k=i—j+(1+1,)/2 (where, 1<ksn;);
if x;>s;, then rjk(*)erjk(*)+ x5,

if x,>s;, then 7 Oer, O+lx,-s,l {Equation 13}

Note that (1+nj)/2 is the center component number of rj**

and rj”, and i-j is a deviation from the center component
number. Also, if value k does not satisfy 1<k=nj, we assume
that values r*jk and r*’jk do not change. FIG. 6 represents
equation 13 in terms of shape, and it shows how the values
r™ijk and rjk increase. Then, the magnitude of the shape
change in i and rj” is numerically evaluated as the
variable of skewness. The skewness of ™ and rj” can be
calculated by using the following equation 14 instead of
equation 10.

n] {Equation 14}
A

~
I

nj
-{Z Ly -r}?}
k=1

(H) _
By’ = 3
" 5
{Z (L) -r}?}
=1
nj nj
=) 3. ()
erk {Z (L) 'rjk}
o =1 =1
B’ = 3

nj 2
{Z L) -r}?}
k=1
(=123 ,m

Note that value Ljk is a deviation from the center axis of
the normal distribution that corresponds to position j. At this
time, the skewness shape variation Dj can be calculated by
using the following equation 15 instead of equation 11.

D;=B("-B {Equation 15}

G=1,2,3,...,m)

As shown in FIGS. 6(c) to 6(f), the value Dj is calculated
from the positive and negative reference patterns for each
position j. Using the m pieces of the skewness shape
variation Dj that we have obtained in equation 15, we can
calculate the difference in shapes between standard and
input patterns by the following equation 16 and we define it
as the “skewness geometric distance d”.

{Equation 16}
(D)

=

a= |3
1

EXPERIMENT EXAMPLE 1

In the above description, we have explained the method
for calculating the skewness geometric distance d by using
the variable of skewness. Next, we have performed numeri-
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cal experiments to calculate the conventional Euclidean
distances, the conventional cosine similarities and the skew-
ness geometric distances of the standard and input patterns
shown in FIGS. 7(a) and 7(b).

FIG. 7(a) gives an example of the “difference” where the
standard pattern has two peaks in the power spectrum, and
input patterns 1, 2 and 3 have a different position on the
second peak. However, each pattern is assumed to have
variable T in the relationship shown in FIG. 7(a). Therefore,
the standard pattern and the input patterns always have the
same area. In this case, the Euclidean distance and cosine
similarity d1, d2 and d3 have the relationship of d1=d2=d3
between the standard pattern and each of input patterns 1, 2
and 3. Therefore, input patterns 1, 2 and 3 cannot be
distinguished.

Moreover, in FIG. 7(a), we assume that the skewness
geometric distances between the standard pattern and each
of input patterns 1, 2 and 3 are d1, d2 and d3, respectively.
However, we have developed equation 12 by using values
nj=27 and 0j=0.58 that are fixed regardless of movement
position value j in FIG. 6. During this time, the number of
white bars of positive and negative reference patterns is 11
for all j values. FIG. 8(a) shows the calculation result of
skewness geometric distances d1, d2 and d3 by increasing
value T from 0.0 to 1.0 in FIG. 7(a). From FIG. 8(a), if value
T is fixed, it turns out that the skewness geometric distance
increases monotonically as the “difference” of the input
pattern peak increases. Therefore, input patterns 1, 2 and 3
can be distinguished in all © values.

FIG. 7(b) gives an example of the “wobble” where the
standard pattern has a flat power spectrum, input patterns 4
and 5 have the “wobble” on the flat power spectrum, and
input pattern 6 has a single peak. However, each pattern is
assumed to have variable p in the relationship shown in FIG.
7(b). Therefore, the standard pattern and the input patterns
always have the same area. In this case, the Euclidean
distance and cosine similarity d4, d5 and d6 have the
relationship of d4=d5=d6 between the standard pattern and
each of input patterns 4, 5 and 6. Therefore, input patterns
4, 5 and 6 cannot be distinguished.

Moreover, in FIG. 7(b), we assume that the skewness
geometric distances between the standard pattern and each
of input patterns 4, 5 and 6 are d4, d5 and d6, respectively.
However, we have developed equation 12 by using values
nj=27 and 0j=0.58 that are fixed regardless of movement
position value j in FIG. 6. During this time, the number of
white bars of positive and negative reference patterns is 11
for all j values. FIG. 8(b) shows the calculation result of
skewness geometric distances d4, d5 and d6 by increasing
value from 0.0 to 1.0 in FIG. 7(b). In FIG. 8(b), if value p
is fixed, values d4 and d5 are smaller than value d6. That is,
if input patterns 4, 5 and 6 have the same area, input patterns
4 and 5 have the energy that is distributed to multiple peaks
as the “wobble” when compared with input pattern 6 that has
the energy concentrated on a single peak. Thus, the skew-
ness geometric distance of input patterns 4 and 5 is smaller
than that of input pattern 6. As a result, it is discovered that
the change in skewness geometric distance to the “wobble”
is small. Therefore, input patterns 4 and 5 can be distin-
guished from input pattern 6 in all p values.

EXPERIMENT EXAMPLE 2

On the other hand, the method for calculating a kurtosis
geometric distance by using a variable of “kurtosis” was
disclosed in the prior arts (the gazette of Japanese Patent No.
3426905 and the gazette of Japanese Patent No. 3342864).
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Next, we have performed numerical experiments to calcu-
late the kurtosis geometric distances d of the standard and
input patterns shown in FIGS. 7(a) and 7(b). Namely, we
have performed these numerical experiments to calculate the
kurtosis geometric distances d by using the following equa-
tions 17 and 18 instead of equations 14 and 15 respectively.
Note that we used the same nj and oj values as the
Experiment Example 1.

{ nj } {i {Equation 17}
(+) 4 ()
i (Ljx) 'rjk}
AH) _ k=1 k=1
ji = n; 2
{Z L) -r}?}
=t
nj nj
SR AT ety
(-) _ \k=L k=1
Ay = n 2
{Z (L -r}?}
)
(j=12,3...m

D;=AY -AD (j=1,2,3,... ,m) {Equation 18}

FIG. 9(a) shows the calculation result of kurtosis geo-
metric distances d1, d2 and d3 by increasing value T from
0.0 to 1.0 in FIG. 7(a). From FIG. 9(a), if value T is fixed,
it turns out that the kurtosis geometric distance increases
monotonically as the “difference” of the input pattern peak
increases. Therefore, input patterns 1, 2 and 3 can be
distinguished in all T values.

FIG. 9(b) shows the calculation result of kurtosis geo-
metric distances d4, d5 and d6 by increasing value p from
0.0 to 1.0 in FIG. 7(b). In FIG. 9(b), if value p is fixed,
values d4 and d5 are smaller than value d6. That is, if input
patterns 4, 5 and 6 have the same area, input patterns 4 and
5 have the energy that is distributed to multiple peaks as the
“wobble” when compared with input pattern 6 that has the
energy concentrated on a single peak. Thus, the kurtosis
geometric distance of input patterns 4 and 5 is smaller than
that of input pattern 6. As a result, it is discovered that the
change in kurtosis geometric distance to the “wobble” is
small. Therefore, input patterns 4 and 5 can be distinguished
from input pattern 6 in all p values.

From FIGS. 8(a), 8(5), 9(a) and 9(b), we can find that the
results of experiment for detecting a similarity by using the
skewness geometric distance and the results of experiment
for detecting a similarity by using the kurtosis geometric
distance of the prior arts are almost identical.

EXPERIMENT EXAMPLE 3

Next, we have performed numerical experiments to cal-
culate the skewness geometric distances d and the kurtosis
geometric distances d of the standard and input patterns
shown in FIG. 10. Note that we used the same nj and oj
values as the Experiment Example 1.

FIG. 10 gives an example where the standard pattern has
a single peak in the power spectrum, and input patterns 7, 8
and 9 have a different peak position. However, each pattern
is assumed to have variable T in the relationship shown in
FIG. 10. Therefore, the standard pattern and the input
patterns always have the same area. Moreover, in FIG. 10,
we assume that the skewness geometric distances and the
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kurtosis geometric distances between the standard pattern
and each of input patterns 7, 8 and 9 are d7, d8 and d9,
respectively. Note that the standard pattern shown in FIG. 10
has the same shape as the standard patterns shown in FIGS.
54(b), 54(c) and 54(d), and the input patterns 7, 8 and 9
shown in FIG. 10 have the same shapes as the input patterns
shown in FIGS. 54(5), 54(c) and 54(d), respectively.

FIG. 11 shows the calculation result of skewness geomet-
ric distances d7, d8 and d9 by increasing value T from 0.0 to
1.0 in FIG. 10. From FIG. 11, if value T is fixed, it turns out
that the skewness geometric distance increases monotoni-
cally as the “difference” of the input pattern peak increases.
Therefore, input patterns 7, 8 and 9 can be distinguished in
all T values. Also, FIG. 12 shows the calculation result of
kurtosis geometric distances d7, d8 and d9 by increasing
value T from 0.0 to 1.0 in FIG. 10. From FIGS. 11 and 12,
we can find that the results of experiment for detecting
similarity by using the skewness geometric distance and the
results of experiment for detecting similarity by using the
kurtosis geometric distance of the prior arts are almost
identical.

EXPERIMENT EXAMPLE 4

Further, we have performed numerical experiments to
calculate the skewness geometric distances d and the kur-
tosis geometric distances d of the standard and input patterns
shown in FIG. 13. Note that we used the same nj and oj
values as the Experiment Example 1.

FIG. 13 gives an example where the standard pattern has
a single peak at the center of the power spectrum, and input
patterns 10, 11 and 12 have different two peaks at symmetri-
cal position with respect to the center of the power spectrum.
However, each pattern is assumed to have variable T in the
relationship shown in FIG. 13. Therefore, the standard
pattern and the input patterns always have the same area.
Moreover, in FIG. 13, we assume that the skewness geo-
metric distances and the kurtosis geometric distances
between the standard pattern and each of input patterns 10,
11 and 12 are d10, d11 and d12, respectively. Note that the
standard pattern shown in FIG. 13 has the same shape as the
standard patterns shown in FIGS. 55(b), 55(¢) and 55(d), and
the input patterns 10, 11 and 12 shown in FIG. 13 have the
same shapes as the input patterns shown in FIGS. 55(5),
55(c) and 55(d), respectively.

FIG. 14 shows the calculation result of skewness geo-
metric distances d10, d11 and d12 by increasing value T
from 0.0 to 1.0 in FIG. 13. From FIG. 14, if value T is fixed,
it turns out that the skewness geometric distance increases
monotonically as the “difference” of the input pattern peak
increases. Therefore, input patterns 10, 11 and 12 can be
distinguished in all © values. Also, FIG. 15 shows the
calculation result of kurtosis geometric distances d10, d11
and d12 by increasing value T from 0.0 to 1.0 in FIG. 13.
From FIGS. 14 and 15, we can find that the results of
experiment for detecting similarity by using the skewness
geometric distance and the results of experiment for detect-
ing similarity by using the kurtosis geometric distance of the
prior arts are almost identical.

The skewness geometric distance d shown in equation 16
is obtained by numerically evaluating the magnitude of the
shape change in the reference pattern vector as a variable of
the “skewness” instead of the method of the prior art
wherein the magnitude of the shape change in the reference
pattern vector is numerically evaluated as a variable of the
“kurtosis”. From the above examples 1 to 4 of numerical
experiment, we can find that the results of experiment for
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detecting similarity by using the skewness geometric dis-
tance shown in equation 16 and the results of experiment for
detecting similarity by using the kurtosis geometric distance
of the prior arts are almost identical. Therefore, we can
understand that the degree of similarity between the standard
pattern and the input pattern can be detected as a distance
value by using any one of the skewness geometric distance
and the kurtosis geometric distance or by simultaneously
using both.

Here, discussion will be made for the experimental results
in examples 3 and 4 of experiment. FIGS. 54(b) to 54(d)
show that a phenomenon occurs that the value of kurtosis
does not change monotonically even if the “difference”
increases between peaks of the standard and input patterns.
On the other hand, FIGS. 55(b) to 55(d) show that a
phenomenon occurs that the value of skewness does not
change at all even if the “difference” increases between the
peaks of the standard and input patterns. Meanwhile, in
examples 3 and 4 of experiment, as a result of numerical
experiments using the standard and input patterns having the
same shapes as those of FIGS. 54(b) to 54(d) and FIGS.
55(b) to 55(d) as shown in FIGS. 10 and 13, it is confirmed
that the skewness geometric distance and kurtosis geometric
distance increase monotonically as the “difference”
increases between peaks of the standard and input patterns
as shown in FIGS. 11, 12, 14 and 15. This shows that the
result is obtained that the skewness geometric distance value
and kurtosis geometric distance value increase monotoni-
cally as the “difference” increases between peaks of the
standard and input patterns by obtaining the variable of
skewness or the variable of kurtosis while moving the center
axis of the reference pattern to each component position of
the standard and input patterns and calculating the square
root of the sum of the squares thereof using equation 16.
Namely, equation 16 is for averaging the variable of kurtosis
or the variable of skewness at each component position of
the standard and input patterns. Thus, even if a phenomenon
occurs that the value of kurtosis or the value of skewness
does not change monotonically with the increase in the
“difference” between peaks of the standard and input pat-
terns, it turns out that the result is obtained that the skewness
geometric distance value and kurtosis geometric distance
value increase monotonically as the “difference” increases
between peaks of the standard and input patterns. However,
averaging means cancelling out the phenomenon that the
value of skewness or the value of kurtosis does not change
monotonically by the phenomenon that the value of skew-
ness or the value of kurtosis changes monotonically, leading
to a decrease in the similarity detection accuracy. Thus,
essential improvements are required. Therefore, a method
for making essential improvements will be described in the
latter part of this embodiment.

In this embodiment, next, a reference pattern vector
whose component values obey a normal distribution is
created, and a skewness-weighting vector (skewness-
weighting curve) having a value of a change rate of “skew-
ness” of the above reference pattern vector as a component
is created in advance. Then, the product-sum of a component
value of the skewness-weighting vector and a component
value of the original standard pattern vector is calculated. In
this case, a skewness-weighted standard pattern vector is
created by obtaining the product-sum while moving the
center axis of the skewness-weighting curve to each com-
ponent position of the original standard pattern vector.
Similarly, the product-sum of a component value of the
skewness-weighting vector and a component value of the
original input pattern vector is calculated. In this case, a
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skewness-weighted input pattern vector is created by obtain-
ing the product-sum while moving the center axis of the
skewness-weighting curve to each component position of
the original input pattern vector. Then, by obtaining an angle
between the above skewness-weighted standard pattern vec-
tor and the skewness-weighted input pattern vector, the
degree of similarity between the original standard pattern
vector and the original input pattern vector can be detected
as a skewness geometric distance value.

Namely, this embodiment shows that, even when the
skewness-weighting vector having a value of a change rate
of “skewness” of the reference pattern vector as a compo-
nent is used instead of the method of the prior art using the
kurtosis-weighting vector having a value of a change rate of
“kurtosis” of the reference pattern vector as a component,
the degree of similarity between the original standard pattern
vector and the original input pattern vector can be detected
as a skewness geometric distance value.

If variable ui is a discrete value, skewness B of function
f(ui) can be calculated using the following equation 19.

{ |3 f) }{Z @) -f(u;)}

{z (u;)z-f(u;)}%

{Equation 19}

B=

Then, numerical experiments are carried out to study the
relationship between skewness B and the increment value o
of'bars shown in FIGS. 16 to 18. The upper graphs (a) to (c)
of FIGS. 16 to 18 shows the bar graphs each having m bars
whose height is the same as function value f(ui) of the
normal distribution. While in this embodiment the number m
is an odd number, the same discussion holds in case of m
being an even number. On bar graphs of FIGS. 16(a) to
16(c), only a single bar increases in height by value § in the
center, an intermediate position, and an end of the normal
distribution. In FIGS. 17(a) to 17(c), two bars of each graph
increase in height by the same value 3. Also, in FIGS. 18(a)
to 18(c), only one bar increases in height by value 6 and
another bar increases in height by value 0.2 at the same time.

Next, the skewness B is calculated using equation 19 for
the bar graphs whose shapes are changed as described
above. The obtained relationship between values. B and 9 is
shown by graphs (i) to (ix) in the lower side of graphs (a) to
(c) of FIGS. 16 to 18. Note that m=11.

From graphs (i), (ii) and (iii) shown in FIGS. 16(a) to
16(c), it is discovered that B=0.0 if 8=0.0. Also, the value of
B changes approximately linearly when value of d increases.
InFIGS. 17(a) to 17(c), graphs (1)+(ii), (ii)+(iii), and (i)+(ii)
are the results obtained by addition of graphs (i), (ii) and
(iii). From these graphs, it is discovered that graphs (iv), (v)
and (vi) are approximated to respective graphs (1)+(ii),
(i1)+(iii), and (i)+(iii). Also, from FIGS. 18(a) to 18(¢), it is
discovered that the gradients of graphs (vii), (viii) and (ix)
are equal to those of graphs (i), (i) and (iii) respectively, and
that the intercepts on the vertical axis are equal to the change
amounts of skewness B if =0.2 on graphs (ii), (iii) and (i)
respectively.

From the above description, it is discovered that we can
plot approximate graphs (iv) to (ix) using graphs (i), (ii) and
(iii) if we plot graphs (i), (i1) and (iii) using equation 19 in
advance. In other words, if the rate of change gi (i=l1,
2, ..., m)of skewness B is calculated in advance based on
the gradients of graphs (i), (i) and (iii), we can determine the
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product of gi multiplied by 8 for each bar even when
multiple bars change in height by different values di. Also,
we can calculate an approximate value of skewness B by
summing gi-di for all i. This property holds for all values of
m and for any variance o* of the normal distribution.

In equation 12, we created positive and negative reference
pattern vectors rj and rj*~ having function values r™jk
and rjk of the normal distribution as components for each
movement position j. FIG. 19(a) expresses equation 12 in
terms of shape, and generalizes the bar graphs shown in the
upper side of FIGS. 16(a) to 16(c). Note that FIG. 19(a) has
nj bars. FIG. 19(a) shows a normal distribution and a single
instance of & (where a change of & occurs at the k-th
position, k=1, 2, . . ., nj). Then, we can calculate the rate of
change in the skewness B (gjk, k=1, 2, . . ., nj) by using
equation 19 and the following equation 20.

g8/ {Equation 20}
*=1,2,3,...,m)
G=1,2,3, ..., m)

The gj(14nj)/2, gjl and gjnj correspond to the gradients of
respective graphs shown in the lower side of FIGS. 16(a) to
16(c). Next, in FIG. 19(a), position k of the bar that has
increased by value d runs from 1 to nj, and equation 20 is
calculated. FIG. 19(5) shows a bar graph of the calculated
value gjk, where 6=0.2. Here, we create a skewness-weight-
ing vector gj having gjk components, and represent it as the
following equation 21.

{Equation 21}

&g &2 - - - » G - s gj,,j)

Equation 21 expresses the rate of change in the skewness
B using nj vector components. As rj™ and 1 are equiva-
lent vectors in the initial state, the skewness-weighting
vector calculated from rji®” and the skewness-weighting
vector calculated from rj” are equal to each other. Thus,
symbols (+) and (-) are omitted in equation 21. Also, the
curve shown in FIG. 19(b) is the envelope curve of the gjk
bar graph that has been calculated assuming the value nj is
sufficiently large, and it is called “Skewness-weighting
curve” in this embodiment. As shown in FIGS. 19(a) and
19(b), the normal curve corresponds to the skewness-
weighting curve, and the positive and negative reference
pattern vectors correspond to the skewness-weighting vec-
tor.

In equation 13, a difference in shapes between standard
pattern vector s and input pattern vector x has been replaced
by the shape changes of positive and negative reference
pattern vectors 1™ and rj”. Then, skewness of 1j**) and
skewness of rj”, whose shapes have changed according to
equation 13, have been calculated using equation 14 . In the
above description, we determined the product value gjk-Ixi—
sil using the rate of change gjk in skewness B and increment
Ixi-sil, and demonstrated that we can calculate the approxi-
mate value of the skewness B by summing gjk-Ixi-sil for all
i. Thus, approximate values of B™*j and B©j of equation 14
can be calculated using the following equation 22.

When k =i- j+ (1 +n;)/2 (where, | <k <n;) {Equation 22}

for all i where x; > s;
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-continued
m
B~ Z g 1xi = sil
im1
for all i where x; < s;

B =) gl —sil

r

(=123, .. ,m

If value of k does not satisfy 1<k=nj, we assume gjk=0.
Next, we consider the signs and replace Ixi-sil by (xi-si),
and rewrite equation 22 as the following equation 23.

When k=i-j+(l+n;)2 (where, | <k <n;) {Equation 23}

for all i where x; > s;

m
B ~ +Z &+ (X = si)
i1

for all i where x; <s;
m

B = —Z i+ (xi = s7)
i=1

(=123, .. ,m

The approximate value of skewness can be calculated by
product-sum operation using equation 23, instead of calcu-
lating the skewness directly using equation 14.

In equation 15, the difference in shapes between standard
and input patterns has been calculated, and it has been
defined as “Skewness shape variation Dj”. Thus, the
approximate value of Dj of equation 15 can be calculated by
substituting equation 23 into equation 15 as the following
equation 24.

When k=i-j+(l+n;)2 (where, | <k <n;) {Equation 24}

Dj::Z

&k (X —s3)

From equation 24, it is discovered that the value Dj can
be separated into the product-sum operation using the com-
ponent value gjk of skewness-weighting vector and the
component value xi of input pattern vector, and the product-
sum operation using the component value gjk and the
component value si of standard pattern vector.

We assign sg(j) and xg(j) to the two product-sum opera-
tions given by equation 24 respectively, and represent them
as the following equation 25.

When k=i-j+(l+n;)2 (where, | <k <n;) {Equation 25}

”
S5() = Z ik " Si
i=1
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-continued
m
Xei) = Z &k i
i=1

(G=1,23, .. ,m

Then, we create a vector sg having sg(j) components, and
a vector xg having xg(j) components, and represent them as
the following equation 26. Equation 26 shows the vectors
that are created with normalization of power spectrum using
their area values.

S (Sgety Sg2y -+ -

Xg=(Kg(1y Xe@y -+ - > s Kgomy) {Equation 26}

From equations 24 and 25, the approximate value of Dj
can be represented as the following equation 27.

Dy =S gy {Equation 27}

G=1,2,3,...,m)

From equation 27, it is discovered that the value Dj can
be obtained by subtracting the component value sg(j) of
vector sg from the component value xg(j) of vector xg.

In equation 16, we have calculated the difference in
shapes between standard and input patterns and we have
defined it as the “skewness geometric distance d”. Thus, the
approximate value of equation 16 can be calculated by
substituting equation 27 into equation 16 as the following
equation 28. Note that d~ is an approximate value of the
skewness geometric distance d.

d= [ % Csp —sgp)? =d
\ E

As described above, the value d™ can be calculated by
using equations 3, 21, 25, and 28 sequentially. From equa-
tions 25 and 28, we can find that the value d™ can be
separated into the product-sum operation using the standard
pattern vector and the product-sum operation using the input
pattern vector.

{Equation 28}

EXPERIMENT EXAMPLE 5

To confirm the approximation accuracy of d~ shownin
equation 28, we performed numerical experiments to calcu-
late the skewness geometric distances dl1 to d6 by the
Experiment Example 1 and the approximate values d™1 to
d™6 by equation 28 with respect to the standard and input
patterns shown in FIGS. 7(a) and 7(b). Note that we used the
same nj and oj values as the Experiment Example 1. FIGS.
20(a) and 20(b) show the results of experiments. Note that
the graphs of d1 to d6 shown in FIGS. 20(a) and 20(5) are
the same as the graphs of d1 to d6 shown in FIGS. 8(a) and
8(b). From FIGS. 20(a) and 20(b), we can find that values
dl to d6é and values d™1 to d™6 are almost identical.

Next, we assign sog(j) to the product-sum operation using
the component value gjk of skewness-weighting vector and
the component value soi of original standard pattern vector
given by equation 2, and assign xog(j) to the product-sum
operation using the component value gjk and the component
value xoi of original input pattern vector, and represent them
as the following equation 29. Equation 29 is obtained by
replacing si and xi by soi and xoi respectively in equation 25.
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When & =i— j+(1+n,)/2 (where, | <k <n;) {Equation 29}

n
Sesti) = ), ik *Sai
i=1

m
Xog(j) = Z &jk ~Xoi
i=1

(=123, .. ,m

Then, we create a skewness-weighted standard pattern
vector sog having sog(j) components, and a skewness-
weighted input pattern vector xog having xog(j) compo-
nents, and represent them as the following equation 30.
Equation 30 shows the vectors that are created without
normalization of the power spectrum.

Sog:(sog(l)x Sog@y + + + 1 Sog(iy s Sog(m))

Kog=Fog(1y Xog@y + - = » Kogy + + + » Kogomy) {Equation 30}

Also, we assign s'g (j) to the product-sum operation using
gj k and s'i given by equation 5, and assign x'g(j) to the
product-sum operation using gjk and x", and represent them
as the following equation 31. Equation 31 is obtained by

replacing si and xi by s'i and x'i respectively in equation 25.

When k=i-j+(l+n;)2 (where, | <k <n;) {Equation 31}

m

= L sh

Se(i) = Z &jk "5
i1

m

P oo Xt

e = Z 8k
-1

(=123, .. ,m

Then, we create a vector s'g having s'g(j) components, and
a vector x'g having x'g(j) components, and represent them as
the following equation 32. Equation 32 shows the vectors
that are created with normalization of power spectrum using
their maximum values.

S (S 1y Se@y - s

XX 1y Xy -+ s X my) {Equation 32}

Equation 4 is substituted into equation 25, and the fol-
lowing equation 33 is obtained using equation 29.

When k=i-j+(l+n;)2 (where, | <k <n;) {Equation 33}
Se(p = Zm: Zjic~ (SoifCs)
=1
= Sog(j)/Cs
Xe(p = Zm: gt - Koilcx)
-1
= Xog(jfex

(=123, .. ,m

Similarly, equation 6 is substituted into equation 31, and
the following equation 34 is obtained using equation 29.
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5'e() S0y C's
¥ ey Fogyy € {Equation 34}

G=1,2,3,...,m)

FIG. 21 is a schematic diagram of the m-dimensional pattern
space, and it shows six vectors, those are sog and xog given
by equation 30, sg and xg given by equation 26, and s'g and
X'g given by equation 32. Note that all vectors begin at origin
0. From equation 33, we can understand that sg(j) and sog(j)
are proportional to each other with proportionality constant
1/cs, and that xg(j) and xog(j) are proportional to each other
with proportionality constant 1/cx. Also, from equation 34,
we can understand that s'g(j) and sog(j) are proportional to
each other with proportionality constant 1/c's, and that x'g(j)
and xog(j) are proportional to each other with proportion-
ality constant 1/¢'x. Therefore, as shown in FIG. 21, vectors
s'g, sg and sog have the same direction. Also, vectors X'g, Xg
and xog have the same direction.

From equation 28, it is clear that the approximate value d~
of the skewness geometric distance d can be calculated as
the Euclidean distance between vector sg and vector xg.
Thus, in FIG. 21, we denote the distance between end points
of' sg and xg by value d”. Also, if we use equation 5 instead
of equation 3 to denote the standard and input pattern
vectors, value d™' can be calculated as the Euclidean distance
between s'g and x'g. Thus, in FIG. 21, we denote the distance
between end points of s'g and x'g by value d™". From FIG. 21,
it is clear that values d~ and d™ take different values
depending on the normalizing method used. To improve on
this, we can calculate an angle dA between sog and xog
shown in FIG. 21 by the following equation 35 and we
define it as the new “skewness geometric distance dA”. The
skewness geometric distance dA is not affected by the
normalizing method used.

{Equation 35}

n
D Sesth - Fosti

=
\/ 3 Gopp)? \/ 3 Coop()?
= =

{Unifying Skewness-Weighting Vectors}

Next, we explain the method for unifying the skewness-
weighting vectors of the present invention. In equation 12,
we have created the m pieces of positive and negative
reference pattern vectors (normal curves). FIG. 22(a) gives
an example of three normal curves among these curves. Note
that the center axis of the normal curve is drawn in com-
ponent position j. In equation 21, we have created the m
skewness-weighting vectors (skewness-weighting curves)
from equation 12 as shown in FIGS. 19(a) and 19(b). The
skewness-weighting curves created from the respective nor-
mal curves in FIG. 22(a) are shown in FIG. 22(6). This
embodiment uses a fixed bar width of each graph for both
standard and input patterns even when the variance value of
the normal distribution has changed. In which case, as
shown in FIG. 22(b), the maximum and minimum values of
those skewness-weighting curves are the same, and those
skewness-weighting curves match when expanded or com-
pressed in the direction of the horizontal axis. Thus, we
consider reducing the computational memory overhead by
unifying m vectors into a single skewness-weighting vector.
FIG. 22(c¢) shows the skewness-weighting curve that has
been created using the range of -2.10 to +2.10 of the normal

cos(ds) =
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curve of variance o°=1. FIG. 22(c) also shows a bar graph
having the same height as the function value of skewness-
weighting curve. Here, the right half of the skewness-
weighting curve is used to create a bar graph for reducing the
computational memory overhead. And we create a skew-
ness-weighting vector g having gkOk0=1, 2, . . ., n)
components whose values are the same as the height of the
bar graph, and represent it as the following equation 36.
However, we assume that value n is sufficiently large when
compared with the number of components nj of equation 21.
Then, the width of each bar shown in FIG. 22(c) is suffi-
ciently small. Also, if n<k0, we insert an appropriate number
of values gk0=0. Equation 36 is the skewness-weighting
vector that represents equation 21, and equation 36 consists
of both n components expressing the shape of skewness-
weighting curve and an appropriate number of component
values 0.

.., 0) {Equation 36}

As shown by the thick-line skewness-weighting curve of
FIG. 22(b), the difference between component numbers i
and j is (i—j) for the skewness-weighting vector gj given by
equation 21. The difference between the component number
at the center and the component number at the rightmost end
position is (nj—1)/2. On the other hand, as shown in FIG.
22(c), the difference between component numbers kO and 1
is (kO-1) and the difference between component numbers n
and 1 is (n-1) for the skewness-weighting vector g given by
equation 36. As described above, each skewness-weighting
curve of FIG. 22(b) can be obtained by expanding or
compressing the skewness-weighting curve of FIG. 22(c) in
the direction of the horizontal axis. Therefore, if the com-
ponent number 1 of FIGS. 22(a) and 22(b) corresponds to kO
of FIG. 22(c), the ratio of (i-j) to (nj-1)/2 is equal to the
ratio of (k0-1) to (n-1), and hence 2(i—j)/(nj-1)=(k0-1)/
(n-1) is satisfied. If we consider that the skewness-weight-
ing curve has symmetry with respect to the origin (an odd
function), we can calculate value kO using equation kO=1+
2li—jl-(n-1)/(nj-1). Note that kO is rounded to the closest
integer value. If value n is sufficiently large (that is, the
width of each bar shown in FIG. 22(c) is sufficiently small),
we can reduce the rounding error. In this way, the values
sog(j) and xog(j) can be calculated by using the following
equation 37 instead of equation 29. Note that Sign (i-j)
means a sign of (i-j) in equation 37. That is, if (i—j)>0 then
Sign(i—j)=1. If (i-))=0 then Sign(i—j)=0. If (i-j)<0 then
Sign(i—j)=-1. Also, the component number k of equation 29
corresponds to kO of FIG. 22(c) or equation 37.

An-1)
(nj——l).ll_Jl'

Equation 37
When ko = 1 + {Equation 37}

n
Sog(j) = Z Sign(i - J)- g, - Soi
=1

m
Xog(j) = Z Sign(i - )« guy * Xoi
i1

(=123, .. ,m

Using equation 37, we can calculate both sog(j) and xog(j)
by simply creating a single g instead of creating gj for each
movement position j of the normal distribution. In this
manner, the memory usage by g is fixed to the value n in
equation 36. While in equation 21, the memory usage by gj
increased in proportion to the square of the value m (rigidly
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speaking, in proportion to the value njxm). As described
above, we can reduce the computational memory overhead
by unifying skewness-weighting vectors into a single one.

FIG. 23 shows a calculation flowchart for a skewness
geometric distance. Note that equation numbers are included
in the figure. From FIG. 23, we can find that the skewness
geometric distance dA is obtained as an angle between: a
skewness-weighted standard pattern vector sog calculated
by product-sum operation using the original standard pattern
vector so and the skewness-weighting vector g having a rate
of change in the skewness for a normal distribution having
a value o as a component; and a skewness-weighted input
pattern vector xog calculated by product-sum operation
using the same skewness-weighting vector g and the original
input pattern vector xo. Note that the meaning of “w” shown
in FIG. 23 will be described later with reference to FIG. 34.

Moreover, FIGS. 24(a) and 24(b) show the flow of
product-sum operations given by equation 37. Note that the
curve in the figure is the skewness-weighting curve shown
in FIG. 22(c), and symbol V (inverse triangle) is a multiplier
and symbol Z (summation codes) is an adder. In FIG. 24(a),
by using multiplier V, we calculate the product Sign (i-j)
-gk0-so0i using the component value Sign (i-j)-gkO of skew-
ness-weighting vector and the component value soi of
original standard pattern vector. By using adder X, we
calculate the product-sum by addition of the product Sign
(i-j)-gk0O-soi for i (i=1, 2, . . . , m), and use it as the
component value sog(j) of skewness-weighted standard pat-
tern vector. Similarly, in FIG. 24(5), we calculate the skew-
ness-weighted input pattern vector by the product-sum
operation using the skewness-weighting vector and the
original input pattern vector. From FIGS. 24(a) and 24(5), it
is discovered that the values sog(j) and xog(j) are calculated
from soi and xoi, respectively, by the weighting of the
skewness-weighting curve.

In general, the calculation of pattern recognition is sepa-
rated into a standard pattern registration process and an input
pattern recognition process. FIGS. 25(a) and 25(5) show a
comparison between calculation amounts of the direct cal-
culation algorithm of skewness and the approximate calcu-
lation algorithm of skewness during the input pattern rec-
ognition process. Note that the numbers in the figure are the
equation numbers. FIG. 25(a) shows the direct calculation
algorithm of skewness during the input pattern recognition
process. From FIG. 25(a), if we calculate the skewness
geometric distances d between N standard patterns and a
single input pattern, we need to calculate equations 3, 13, 14,
15 and 16 sequentially for each combination of standard and
input patterns. On the other hand, FIG. 25(5) shows the
approximate calculation algorithm of skewness during the
input pattern recognition process. From FIG. 25(5), if we
calculate the skewness geometric distances dA between N
standard patterns and a single input pattern, we can obtain N
values of dA by performing a single time calculation of
x0g(j) and an N times of cosine similarity calculation. From
FIGS. 25(a) and 25(b), it is discovered that we can reduce
the processing overhead by using the approximate calcula-
tion algorithm of skewness instead of the direct calculation
algorithm of skewness during the input pattern recognition
process.

EXPERIMENT EXAMPLE 6

Next, we performed numerical experiments to calculate
the skewness geometric distances dA of the standard and
input patterns shown in FIGS. 7(¢) and 7(b) by using
processing procedures shown in FIG. 23. Note that we used



US 9,552,831 B2

45

the same nj and oj values as the Experiment Example 1.
Also, note that we read d1 to dé in FIGS. 7(a) and 7(b) as
dA1 to dA6 respectively. FIGS. 26(a) and 26(5) show the
results of experiments. From the figures, we can find that
dA5<dA4 in FIG. 26(b) although d™4=d™5 in FIG. 20(b).
Here, m=11 for the standard and input patterns shown in
FIGS. 7(a) and 7(b). From the experiments, we found that
the larger value was switched between dA4 and dA5 when
value m increased. Also, the two lines became close to
position dA5 shown in FIG. 26(b). However, the difference
between dA4 and dAS is small because we use m=256 in the
general spectrum analysis.

{Comparison Between Present Invention and Prior Art}

In the present invention, as shown in FIG. 19, a reference
pattern vector whose component values are normally dis-
tributed is created, and a skewness-weighting vector (equa-
tion 36) having a value of a change rate of a skewness of the
above reference pattern vector as a component is created.
Next, as shown in FIG. 23, a skewness-weighted standard
pattern vector (equation 30) is created, using equation 37, by
product-sum operation using the component value of skew-
ness-weighting vector (equation 36) and the component
value of the original standard pattern vector (equation 2).
Similarly, a skewness-weighted input pattern vector (equa-
tion 30) is created, using equation 37, by product-sum
operation using the component value of the same skewness-
weighting vector (equation 36) and the component value of
the original input pattern vector (equation 2). Then, an angle
between the skewness-weighted standard pattern vector
(equation 30) and the skewness-weighted input pattern vec-
tor (equation 30) is calculated using equation 35 as a
skewness geometric distance.

On the other hand, in the methods of the prior arts, as
shown in FIG. 27, a reference pattern vector whose com-
ponent values are normally distributed is created, and a
kurtosis-weighting vector having a value of a change rate of
a kurtosis of the above reference pattern vector as a com-
ponent is created. Next, a kurtosis-weighted standard pattern
vector is created by product-sum operation using the com-
ponent values of kurtosis-weighting vector and the compo-
nent values of the original standard pattern vector. Similarly,
a kurtosis-weighted input pattern vector is created by prod-
uct-sum operation using the component values of the same
kurtosis-weighting vector and the component values of the
original input pattern vector. Then, an angle between the
kurtosis-weighted standard pattern vector and the kurtosis-
weighted input pattern vector is calculated as a kurtosis
geometric distance.

As described above, we can understand that, although the
skewness-weighting vector and the kurtosis-weighting vec-
tor have different component values, these two vectors can
be expressed in the same form. Thus, in this embodiment,
the skewness-weighting vector and the kurtosis-weighting
vector are expressed by use of the same equation (equation
21 and equation 36). Moreover, the skewness-weighted
standard and input pattern vectors and the kurtosis-weighted
standard and input pattern vectors are calculated respec-
tively by: product-sum operation using the component val-
ues of skewness-weighting vector and the component values
of the original standard and input pattern vectors; and
product-sum operation using the component values of kur-
tosis-weighting vector and the component values of the
original standard and input pattern vectors. We can under-
stand that these four equations can be expressed in the same
form. Thus, in this embodiment, the equations for calculat-
ing the skewness-weighted standard and input pattern vec-
tors and the kurtosis-weighted standard and input pattern
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vectors are expressed using the same equation (equation 29).
Further, although the skewness-weighted standard and input
pattern vectors and the kurtosis-weighted standard and input
pattern vectors have different component values, we can
understand that these four vectors can be expressed in the
same form. Thus, in this embodiment, the skewness-
weighted standard and input pattern vectors and the kurtosis-
weighted standard and input pattern vectors are expressed
using the same equation (equation 30). The skewness geo-
metric distance and the kurtosis geometric distance are
calculated from the angle between the skewness-weighted
standard and input pattern vectors and the angle between the
kurtosis-weighted standard and input pattern vectors. We
can understand that these two equations can be expressed in
the same form. Thus, in this embodiment, the equations for
calculating the skewness geometric distance and the kurtosis
geometric distance are expressed using the same equation
(equation 16 and equation 35).

{Unifying Kurtosis-Weighting Vectors}

Next, we explain the method for unifying the kurtosis-
weighting vectors of the prior arts. In equation 12, we have
created the m pieces of positive and negative reference
pattern vectors (normal curves). FIG. 28(a) gives an
example of three normal curves among these curves. Note
that the center axis of the normal curve is drawn in com-
ponent position j. In equation 21, we have created the m
kurtosis-weighting vectors (kurtosis-weighting curves) from
equation 12 as shown in FIGS. 27(a) and 27(b). The
kurtosis-weighting curves created from the respective nor-
mal curves in FIG. 28(a) are shown in FIG. 28(5). The prior
arts use a fixed bar width of each graph for both standard and
input patterns even when the variance value of the normal
distribution has changed. In which case, as shown in FIG.
28(b), the maximum and minimum values of those kurtosis-
weighting curves are the same, and those kurtosis-weighting
curves match when expanded or compressed in the direction
of the horizontal axis. Thus, we consider reducing the
computational memory overhead by sharing m vectors into
a single kurtosis-weighting vector. FIG. 28(¢) shows the
kurtosis-weighting curve that has been created using the
range of -2.10 to +2.10 of the normal curve of variance
o?=1. FIG. 28(c) also shows a bar graph having the same
height as the function value of kurtosis-weighting curve.
Here, the right half of the kurtosis-weighting curve is used
to create a bar graph for reducing the computational memory
overhead. And we create a kurtosis-weighting vector g
having gkO (kO =1, 2, . . ., n) components whose values are
the same as the height of the bar graph, and represent it as
equation 36. However, we assume that value n is sufficiently
large when compared with the number of components nj of
equation 21. Then, the width of each bar shown in FIG. 28(c)
is sufficiently small. Also, if n<kO, we insert an appropriate
number of values gkO=0. Equation 36 is the kurtosis-
weighting vector that represents equation 21, and equation
36 consists of both n components expressing the shape of
kurtosis-weighting curve and an appropriate number of
component values 0.

As shown by the thick-line kurtosis-weighting curve of
FIG. 28(b), the difference between component numbers i
and j is (i—j) for the kurtosis-weighting vector gj given by
equation 21. The difference between the component number
at the center and the component number at the rightmost end
position is (nj—1)/2. On the other hand, as shown in FIG.
28(c), the difference between component numbers kO and 1
is (kO-1) and the difference between component numbers n
and 1 is (n-1) for the kurtosis-weighting vector g given by
equation 36. As described above, each kurtosis-weighting
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curve of FIG. 28(b) can be obtained by expanding or
compressing the kurtosis-weighting curve of FIG. 28(c) in
the direction of the horizontal axis. Therefore, if the com-
ponent number 1 of FIGS. 28(a) and 28(b) corresponds to kO
of FIG. 28(c), the ratio of (i-j) to (nj-1)/2 is equal to the
ratio of (k0-1) to (n-1), and hence 2(i—j)/(nj-1)=(k0-1)/
(n-1) is satisfied. If we consider that the kurtosis-weighting
curve is symmetrical about the center axis (an even func-
tion), we can calculate value kO using equation kO=1+2li-
jl-(n—1)/(nj-1). Note that kO is rounded to the closest integer
value. If value n is sufficiently large (that is, the width of
each bar shown in FIG. 28(c) is sufficiently small), we can
reduce the rounding error. In this way, the values sog (j) and
x0g(j) can be calculated by using the following equation 38
instead of equation 29. Note that the component number k
of equation 29 corresponds to kO of FIG. 28(c) or equation
38.

2n-1)
(n;=1)

{Equation 38}

When ko =1 + i=Jl;

m
Sog(j) = Z 8ko *Soi
i=1

m
Xog(j) = Z 8kg " Xoi
i=1

(=123, .. ,m

Using equation 38, we can calculate both sog (j) and
xo0g(j) by simply creating a single g instead of creating gj for
each movement position j of the normal distribution. In this
manner, the memory usage by g is fixed to the value n in
equation 36. While in equation 21, the memory usage by gj
increased in proportion to the square of the value m (rigidly
speaking, in proportion to the value njxm). As described
above, we can reduce the computational memory overhead
by unifying kurtosis-weighting vectors into a single one.

FIG. 29 shows a calculation flowchart for a kurtosis
geometric distance. Note that equation numbers are included
in the figure. From FIG. 29, we can find that the kurtosis
geometric distance dA is obtained as an angle between: a
kurtosis-weighted standard pattern vector sog calculated by
product-sum operation using the original standard pattern
vector so and the kurtosis-weighting vector g having a rate
of change in the kurtosis for a normal distribution having a
value o as a component; and a kurtosis-weighted input
pattern vector xog calculated by product-sum operation
using the same kurtosis-weighting vector g and the original
input pattern vector xo. Note that the meaning of “w” shown
in FIG. 29 will be described later with reference to FIG. 40.

Moreover, FIGS. 30(a) and 30(b) show the flow of
product-sum operations given by equation 38. Note that the
curve in the figure is the kurtosis-weighting curve shown in
FIG. 28(c), and symbol V (inverse triangle) is a multiplier
and symbol Z (summation codes) is an adder. In FIG. 30(a),
by using multiplier V, we calculate the product gk0-soi using
the component value gkO of kurtosis-weighting vector and
the component value soi of original standard pattern vector.
By using adder X, we calculate the product-sum by addition
of the product gkO-soi fori (i=1, 2, .. . , m), and use it as the
component value sog(j) of kurtosis-weighted standard pat-
tern vector. Similarly, in FIG. 30(b), we calculate the kur-
tosis-weighted input pattern vector by the product-sum
operation using the kurtosis-weighting vector and the origi-
nal input pattern vector. From FIGS. 30(a) and 30(b), it is
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discovered that the values sog(j) and xog(j) are calculated
from soi and xoi, respectively, by the weighting of the
kurtosis-weighting curve.

In general, the calculation of pattern recognition is sepa-
rated into a standard pattern registration process and an input
pattern recognition process. FIGS. 31(a) and 31(5) show a
comparison between calculation amounts of the direct cal-
culation algorithm of kurtosis and the approximate calcula-
tion algorithm of kurtosis during the input pattern recogni-
tion process. Note that the numbers in the figure are the
equation numbers. FIG. 31(a) shows the direct calculation
algorithm of kurtosis during the input pattern recognition
process. From FIG. 31(a), if we calculate the kurtosis
geometric distances d between N standard patterns and a
single input pattern, we need to calculate equations 3, 13, 17,
18 and 16 sequentially for each combination of standard and
input patterns. On the other hand, FIG. 31(5) shows the
approximate calculation algorithm of kurtosis during the
input pattern recognition process. From FIG. 31(5), if we
calculate the kurtosis geometric distances dA between N
standard patterns and a single input pattern, we can obtain N
values of dA by performing a single time calculation of
x0g(j) and an N times of cosine similarity calculation. From
FIGS. 31(a) and 31(b), it is discovered that we can reduce
the processing overhead by using the approximate calcula-
tion algorithm of kurtosis instead of the direct calculation
algorithm of kurtosis during the input pattern recognition
process.

EXPERIMENT EXAMPLE 7

Next, we performed numerical experiments to calculate
the kurtosis geometric distances dA of the standard and input
patterns shown in FIGS. 7(a) and 7(b) by using processing
procedures shown in FIG. 29. Note that we used the same nj
and o values as the Experiment Example 1. Also, note that
we read d1 to dé in FIGS. 7(a) and 7(b) as dAl to dA6
respectively. FIGS. 32(a) and 32(b) show the results of
experiments. From the figures, we can find that dA5>dA4 in
FIG. 32(b). Here, m=11 for the standard and input patterns
shown in FIGS. 7(a) and 7(4). From the experiments, we
found that the larger value was switched between dA4 and
dAS5 when value m increased. Also, the two lines became
close to position dA4 shown in FIG. 32(b). However, the
difference between dA4 and dAS is small because we use
m=256 in the general spectrum analysis.

The skewness geometric distance according to the present
invention is calculated with the method using the skewness-
weighting vector having a value of a change rate of skew-
ness of the normal distribution as a component. On the other
hand, the kurtosis geometric distance according to the prior
art is calculated with the method using the kurtosis-weight-
ing vector having a value of a change rate of kurtosis of the
normal distribution as a component. From the above result
of Experiment Example 7, we can understand that the degree
of similarity between the original standard pattern vector
and the original input pattern vector can be detected as a
distance value, as in the case of the kurtosis geometric
distance according to the prior art, even by using the
skewness geometric distance according to the present inven-
tion.

{Optimizing Variance of Normal Distribution in Present
Invention}

In the present invention, the reference pattern vector
(equation 12) whose component values are normally dis-
tributed is created as shown in FIG. 19(a), and the skewness-
weighting vector (equation 21) having a value of a change
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rate of skewness of the reference pattern vector as a com-
ponent is created as shown in FIG. 19(b) by using equation
20. Next, as for the skewness geometric distance according
to the present invention, the influence of the value of
variance of the normal distribution on the similarity detec-
tion accuracy will be described. However, here, consider-
ation will be made for the limited case where a difference in
shapes between the standard and input patterns is small, as
in the case of the description of FIGS. 53 to 55, and a method
for replacing a difference in shapes between the standard and
input patterns by the shape change in one reference pattern
vector.

The upper and middle diagrams of FIGS. 33(a) and 33(b)
show a typical example exhibiting shapes of the standard
and input patterns having two peaks, respectively. Also, the
bottom diagrams of FIGS. 33(a) and 33(b) show an example
where a difference in shapes between the standard and input
patterns is replaced by the shape change in the reference
pattern having the normal distribution as its initial shape.
Note that the standard patterns shown in FIGS. 33(a) and
33(b) have the same shape, and the input patterns shown in
FIGS. 33(a) and 33(b) have the same shape. Also, note that
the peaks of the standard and input patterns shown in FIGS.
33(a) and 33(b) are assumed to have the same height, and the
area of each standard pattern and each input pattern is equal
to 1.

The bottom diagram of FIG. 33(a) shows a typical
example of the reference pattern that has been created
from the normal distribution having a large variance
value. Because the positions of two bars (i) in the figure
are symmetrical about the center axis of the normal
distribution, the effect of two decreases is cancelled out
concerning the skewness Bj. Similarly, the effect of
increases of two bars (ii) in the figure is cancelled out.
As a result, the skewness becomes Bj=0. Therefore, in
this case, we cannot detect the difference between
peaks of the standard and input patterns by using the
value of the skewness Bj.

The bottom diagram of FIG. 33(b) shows a typical
example of the two reference patterns that have been
created from the normal distribution having a small
variance value. In FIG. 33(b), the skewness becomes
B4>0 and Bj<0. Therefore, in this case, we can detect
the difference between peaks of the standard and input
patterns by using the skewness values B4 and B;.

If we use the normal distribution having the small vari-
ance value as shown in the bottom diagram of FIG. 33(),
then we need to use several reference patterns so that they
may cover the entire standard and input patterns. Therefore,
as shown in F1G. 34, we determine the variable of skewness
Bj for each j while moving the center axis of the normal
distribution to each component positionj (=1, 2, ..., m) of
the standard and input patterns. We calculate a square root
of' a sum of a square of each variable of skewness Bj (=1,
2, ..., m), and we define it as the “skewness geometric
distance d” (Equation 16) between the standard and input
patterns. From the typical examples of FIGS. 33(a) and
33(b), it is understood that the accuracy of the similarity
detection is changed as the variance value of the normal
distribution is changed.

The description has been given of the influence of the
value of variance of the normal distribution on the similarity
detection accuracy in the calculation of the skewness geo-
metric distance. Next, a method for obtaining an optimum
value of variance of the normal distribution will be
described.
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In hitting a concrete structure using a hammer, generally,
a power spectrum changes subtly with each hit even at the
same spot of the same structure. Therefore, a method is
usually adopted wherein more than one normal standard
sound is registered by repeatedly hitting the same spot of a
normal structure and more than one abnormal standard
sound is registered by repeatedly hitting the same spot of an
abnormal structure. Moreover, in voice recognition, a power
spectrum changes subtly with each utterance of the same
voice. Therefore, a method is usually adopted wherein a
number of persons repeatedly produce the same voice and
more than one standard sound is registered for each voice.
Note that, in the description thus far, the method for calcu-
lating the skewness geometric distance value dA between
the standard and input sounds has been described. Alterna-
tively, we can replace the input sound by the standard sound
and, using the same method, calculate a skewness geometric
distance value dA between two standard sounds.

For example, assuming that a group of normal standard
sounds is category 1, the upper diagrams of FIG. 35 show
two examples of a power spectrum of a normal sound, which
are set as standard sounds 1 and 2 belonging to category 1,
respectively. Also, assuming that a group of abnormal stan-
dard sounds is category 2, the lower diagrams of FIG. 35
show two examples of a power spectrum of an abnormal
sound, which are set as standard sounds 3 and 4 belonging
to category 2, respectively. Note that, in FIG. 35, skewness
geometric distances between the standard sounds are sche-
matically depicted respectively as dA(1-2), dA(3-4), dA(1-
3), dA(1-4), dA(2-3) and dA(2-4). dA(1-2) indicated by the
solid arrow denotes the skewness geometric distance
between the normal standard sounds 1 and 2 belonging to the
same category. dA(3-4) indicated by the solid arrow denotes
the skewness geometric distance between the abnormal
standard sounds 3 and 4 belonging to the same category.
dA(1-3) and dA(1-4) indicated by the dashed arrows denote
the skewness geometric distances between the normal stan-
dard sound 1 and the abnormal standard sounds 3 and 4
belonging to the different categories. dA(2-3) and dA(2-4)
indicated by the dashed arrows denote the skewness geo-
metric distances between the normal standard sound 2 and
the abnormal standard sounds 3 and 4 belonging to the
different categories.

Here, if the distance between the standard sounds of the
same category is shortened, and simultaneously, the distance
between the standard sounds of the different categories is
elongated, then, as a result, separation property of the
standard sounds of the same category and the standard
sounds of the different categories is improved, and thus
recognition performance when an input sound is given is
improved.

Next, a state of separation of the standard sounds of the
same category from the standard sounds of the different
categories is checked while changing the value of variance
of the normal distribution. In this embodiment, we change
the value of variance of the normal distribution by changing
the value w shown in FIGS. 34(c) to 34(f) . In the reference
patterns shown in FIGS. 34(c) to 34(f), the white bars
correspond to the component numbers i of the input pattern
and, therefore, their values change in response to the
“wobble” of the input pattern. However, the gray bars do not
correspond to the component numbers i and their values do
not change. Here, the number of white bars in the bar graph
of each reference pattern is set to the same value w so that
the sensitivity to the “wobble” in the reference patterns may
be equated regardless of the position of the normal distri-
bution. In FIGS. 34(c) to 34(f), for an example, each
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reference pattern includes seven white bars (w=7) . Note that
“w” shown in FIG. 23 corresponds to “w” shown in FIGS.
34(c) to 34(f).

To be more specific, in order to check changes in the
values of the skewness geometric distances dA (1-2), dA
(3-4), dA(1-3), dA(1-4), dA(2-3) and dA(2-4) between the
standard sounds shown in FIG. 35 while changing the value
o shown in FIGS. 34(c) to 34(f), a value (d"-d2) of a
difference in mean is obtained by subtracting a skewness
geometric distance mean d~2 between the standard sounds
of the same category from a skewness geometric distance
mean d”1 between the standard sounds of the different
categories, as shown in the following equation 39. Next, we
obtain the square root of the sum ((s;*/N)+(5,%/N,)) of a
value (s,*/N,) obtained by dividing a sample variance s,> of
the skewness geometric distance between the standard
sounds of the different categories by the sample size N, and
a value (s,*/N,) obtained by dividing a sample variance s,>
of the skewness geometric distance between the standard
sounds of the same category by the sample size N,. Then, a
Welch’ s test statistic T(w) is calculated as a value of an
objective function by dividing the above value of the dif-
ference in mean by the above square root.

Ny =4 {Equation 39}
Ny =2
7 = Qs +daay rdagn +dac-y

| =

Ny

_dag-n+dag-y
Np

2
N

(daq-3) -d) + (daa-4 D

2 2
2 ae-y—di) +dag-9-d1)
1= N -1

_ (g —d2) + (dpsa~d)’
- N, —1

FIG. 36 is a schematic diagram showing a frequency
distribution cf the distance values between the standard
sounds of the different categories and a frequency distribu-
tion of the distance values between the standard sounds of
the same category, which are drawn by using the respective
means d™1 and d72 and the respective sample standard
deviations s, and s,. From FIG. 36, we can find that, when
T(w) reaches its maximum as the value of the numerator of
T(w) shown in equation 39 increases and, simultaneously,
the value of the denominator decreases, the distance between
the standard sounds of the same category is shortened and,
simultaneously, the distance between the standard sounds of
the different categories is elongated. Therefore, the skew-
ness-weighting curve is optimized, which is created based
on the value w that maximizes the value of T(w). A gener-
alized expression of the above discussion is as follows.
Specifically, the problem of obtaining an optimum skew-
ness-weighting curve boils down to the optimization prob-
lem of obtaining the value of the variable w that maximizes
the objective function when T(w) is the objective function.

FIG. 37 shows processing procedures for obtaining an
optimum value of ® by use of N1 standard sounds (normal
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sounds) belonging to category 1 and N2 standard sounds
(abnormal sounds) belonging to category 2. Note that N1=2
and N2=2. Also, the number of bars m shown in FIG. 3 is
set to 257, and power spectra of the standard sounds are
created. In FIG. 37, an optimum value is obtained by
running the value o from 3 to 255.

In Step 1 of FIG. 37, (N14N2) power spectra are created
by recording the N1 standard sounds (normal sounds)
of category 1 and the N2 standard sounds (abnormal
sounds) of category 2.

In Step 2, @=3 is set as an initial value.

In Step 3, the skewness geometric distance dA for each
combination of two from the (N1+N2) standard sounds
is calculated using the processing procedures shown in
FIG. 23, and the mean and sample variance of the
skewness geometric distances between the standard
sounds of the different categories and those of the
skewness geometric distances between the standard
sounds of the same category are obtained using the
same way as in equation 39.

In Step 4, Welch’s test statistic T(w) is calculated using
the same way as in equation 39.

In Steps 5 and 6, the processing of Steps 3 and 4 is
repeated while increasing the value w to 255 with an
increment of 2.

In Step 7, the value w that maximizes the value of T(w)
is obtained as an optimum value ws.

EXPERIMENT EXAMPLE 8

Next, results of experiment for obtaining the optimum
value of w will be described. Specifically, the experiment
was conducted following the processing procedures shown
in FIG. 37, in which 10 normal standard sounds (belonging
to category 1) were recorded by repeatedly hitting the same
spot of a normal concrete structure, 10 abnormal standard
sounds (belonging to category 2) were recorded by repeat-
edly hitting the same spot of an abnormal concrete structure,
and then the optimum value of ® was obtained by using
these 20 standard sounds. Here, a power spectrum of the
standard sounds was created by setting the number of the
bars shown in FIG. 3 to m=257. In the case of this experi-
ment, when considered as in FIG. 35, 10x10=100 values are
calculated as the skewness geometric distances dA between
the standard sounds of the different categories, and
2%, 0C,=2x10x9/2=90 values are calculated as the skewness
geometric distances dA between the standard sounds of the
same category. Then, using the same way as in equation 39,
the mean and sample variance of the skewness geometric
distances between the standard sounds of the different
categories and those of skewness geometric distances
between the standard sounds of the same category were
obtained, and Welch’s test statistic T(w) was calculated.
FIG. 38 shows the result of calculating the value of objective
function T(w) while increasing the value ® shown in FIGS.
34(c) to 34(f) from 3 to 255 with an increment of 2. From
FIG. 38, we can find that the value of T(w) reaches its
maximum when w=41. Therefore, the optimum value is set
to ws=41 and the optimum skewness-weighting curve is
created using this value.

Note that, instead of Welch’s test statistic T(w), a recog-
nition rate R(w) maybe used as the objective function. In this
case, for example, the N1 standard sounds (normal sounds)
belonging to category 1 and the N2 standard sounds (abnor-
mal sounds) belonging to category 2 are recorded in
advance, and skewness geometric distances dA between one
input sound (normal sound) different from those standard
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sounds and the above (N14N2) standard sounds are calcu-
lated. Then, when the standard sound corresponding to the
minimum value among the (N1+N2) skewness geometric
distances dA thus obtained belongs to category 1, the input
sound is judged to belong to category 1 (to be a normal
sound). On the other hand, when the standard sound corre-
sponding to the minimum value belongs to category 2, the
input sound is judged to belong to category 2 (to be an
abnormal sound). Similarly, skewness geometric distances
dA between another input sound (abnormal sound) different
from the above and the above (N1+N2) standard sounds are
calculated. Then, when the standard sound corresponding to
the minimum value among the (N1+N2) skewness geomet-
ric distances dA thus obtained belongs to category 1, the
input sound is judged to belong to category 1 (to be a normal
sound). On the other hand, when the standard sound corre-
sponding to the minimum value belongs to category 2, the
input sound is judged to belong to category 2 (to be an
abnormal sound). Similarly, the above recognition experi-
ment is conducted using a number of input sounds (normal
sounds and abnormal sounds), and the recognition rate R(w)
is calculated using a percentage at which the input sounds
(normal sounds and abnormal sounds) are judged correctly.
In this case, the value of the objective function R(w) is
calculated by increasing the value w from 3 to 255 with an
increment of 2. Thus, the value w that maximizes the value
of R(w) is obtained as the optimum value ws.

In the present invention, a normal distribution having the
optimum value ws thus obtained is created, a reference
pattern vector having component values representing the
above normal distribution is created, and a skewness-
weighting vector having a value of a change rate of “skew-
ness” of the above reference pattern vector as a component
is created. Next, a skewness-weighted standard pattern vec-
tor is created by product-sum operation using the component
value of the skewness-weighting vector and the component
value of the original standard pattern vector. Similarly, a
skewness-weighted input pattern vector is created by prod-
uct-sum operation using the component value of the same
skewness-weighting vector and the component value of the
original input pattern vector. Then, an angle between the
skewness-weighted standard pattern vector and the skew-
ness-weighted input pattern vector is calculated, and the
degree of similarity between the original standard pattern
vector and the original input pattern vector is detected as a
skewness geometric distance value.

{Optimizing Variance of Normal Distribution in Prior
Art}

In the prior art (the gazette of Japanese Patent No.
3422787), the reference pattern vector whose component
values are normally distributed is created as shown in FIG.
27(a), and the kurtosis-weighting vector having a value of a
change rate of kurtosis of the above reference pattern vector
as a component is created as shown in FIG. 27(b). Next, a
kurtosis-weighted standard pattern vector is created by prod-
uct-sum operation using the component value of kurtosis-
weighting vector and the component value of the original
standard pattern vector. Similarly, a kurtosis-weighted input
pattern vector is created by product-sum operation using the
component value of the same kurtosis-weighting vector and
the component value of the original input pattern vector.
Then, an angle between the kurtosis-weighted standard
pattern vector and the kurtosis-weighted input pattern vector
is calculated, and the degree of similarity between the
original standard pattern vector and the original input pattern
vector can be detected as a kurtosis geometric distance
value.
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Next, as for the kurtosis geometric distance according to
the prior art (the gazette of Japanese Patent No. 3422787),
the influence of the value of variance of the normal distri-
bution on the similarity detection accuracy will be
described. However, here, consideration will be made for the
limited case where a difference in shapes between the
standard and input patterns is small, as in the case of the
description of FIGS. 53 to 55, and a method for replacing the
difference in shapes between the standard and input patterns
by the shape change in one reference pattern vector.

The upper and middle diagrams of FIGS. 39(a) and 39(b)
show a typical example exhibiting shapes of the standard
and input patterns having two peaks, respectively. Also, the
bottom diagrams of FIGS. 39(a) and 39(b) show an example
where a difference in shapes between the standard and input
patterns is replaced by the shape change in the reference
pattern having the normal distribution as its initial shape.
Note that the standard patterns shown in FIGS. 39(a) and
39(b) have the same shape, and the input patterns shown in
FIGS. 39(a) and 39(5) have the same shape. Also, note that
the peaks of the standard and input patterns shown in FIGS.
39(a) and 39(b) are assumed to have the same height, and the
area of each standard pattern and each input pattern is equal
to 1. The positions of the second peaks of the standard and
input patterns shown in FIG. 39 are different from those
shown in FIG. 33, therefore, the positions of the decreased
and increased component values of the reference patterns
shown in FIG. 39 are different from those shown in FIG. 33.

The bottom diagram of FIG. 39(a) shows a typical
example of the reference pattern that has been created
from a normal distribution having a large variance
value. Because the positions of two bars (i) in the figure
are symmetrical about the center axis of the normal
distribution, the effect of a decrease and an increase is
cancelled out concerning the kurtosis Aj. Similarly, the
effect of a decrease and an increase of two bars (ii) in
the figure is cancelled out. As a result, the kurtosis
becomes Aj=3. Therefore, in this case, we cannot detect
the difference between peaks of the standard and input
patterns by using the value of the kurtosis Aj.

The bottom diagram of FIG. 39(b) shows a typical
example of the two reference patterns that have been
created from a normal distribution having a small
variance value. In FIG. 39(b), the kurtosis becomes
A4<3 and Aj<3. Therefore, in this case, we can detect
the difference between peaks of the standard and input
patterns by using the kurtosis values A4 and Aj.

If we use the normal distribution having the small vari-
ance value as shown in the bottom diagram of FIG. 39(),
then we need to use several reference patterns so that they
may cover the entire standard and input patterns. Therefore,
as shown in FIG. 40, we determine the variable of kurtosis
Aj for each j while moving the center axis of the normal
distribution to each component position j (=1, 2, ..., m) of
the standard and input patterns. We calculate a square root
of a sum of a square of each variable of kurtosis Aj (=1,
2, ..., m), and we define it as the “Kurtosis geometric
distance d” between the standard and input patterns. From
the typical examples of FIGS. 39(a) and 39(b), it is under-
stood that the accuracy of the similarity detection is changed
as the variance value of the normal distribution is changed.

The description has been given of the influence of the
value of variance of the normal distribution on the similarity
detection accuracy in the calculation of the kurtosis geo-
metric distance. Next, a method for obtaining an optimum
value of variance of the normal distribution will be
described.
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In inspection by hitting a concrete structure using a
hammer, generally, a power spectrum changes subtly with
each hit even at the same spot of the same structure.
Therefore, a method is usually adopted wherein more than
one normal standard sound is registered by repeatedly
hitting the same spot of a normal structure and more than
one abnormal standard sound is registered by repeatedly
hitting the same spot of an abnormal structure. Moreover, in
voice recognition, a power spectrum changes subtly with
each utterance of the same voice. Therefore, a method is
usually adopted wherein a number of persons repeatedly
produce the same voice and more than one standard sound
is registered for each voice. Note that, the prior art (the
gazette of Japanese Patent No. 3422787) discloses the
method for calculating the kurtosis geometric distance value
dA between the standard and input sounds. Alternatively, we
can replace the input sound by the standard sound and, using
the same method, calculate a kurtosis geometric distance
value dA between two standard sounds.

For example, assuming that a group of normal standard
sounds is category 1, the upper diagrams of FIG. 35 show
two examples of a power spectrum of a normal sound, which
are set as standard sounds 1 and 2 belonging to category 1,
respectively. Also, assuming that a group of abnormal stan-
dard sounds is category 2, the lower diagrams of FIG. 35
show two examples of a power spectrum of an abnormal
sound, which are set as standard sounds 3 and 4 belonging
to category 2, respectively. Note that, in FIG. 35, kurtosis
geometric distances between the standard sounds are sche-
matically depicted respectively as dA(1-2), dA(3-4), dA(1-
3), dA(1-4), dA(2-3) and dA(2-4). dA(1-2) indicated by the
solid arrow denotes the kurtosis geometric distance between
the normal standard sounds 1 and 2 belonging to the same
category. dA(3-4) indicated by the solid arrow denotes the
kurtosis geometric distance between the abnormal standard
sounds 3 and 4 belonging to the same category. dA(1-3) and
dA(1-4) indicated by the dashed arrows denote the kurtosis
geometric distances between the normal standard sound 1
and the abnormal standard sounds 3 and 4 belonging to the
different categories. dA(2-3) and dA(2-4) indicated by the
dashed arrows denote the kurtosis geometric distances
between the normal standard sound 2 and the abnormal
standard sounds 3 and 4 belonging to the different catego-
ries.

Here, if the distance between the standard sounds of the
same category is shortened, and simultaneously, the distance
between the standard sounds of the different categories is
elongated, then, as a result, separation property of the
standard sounds of the same category and the standard
sounds of the different categories is improved, and thus
recognition performance when an input sound is given is
improved.

Next, a state of separation of the standard sounds of the
same category from the standard sounds of the different
categories is checked while changing the value of variance
of the normal distribution. Here, we change the value of
variance of the normal distribution by changing the value w
shown in FIGS. 40(c) to 40(f). In the reference patterns
shown in FIGS. 40(c) to 40(f), the white bars correspond to
the component numbers i of the input pattern and, therefore,
their values change in response to the “wobble” of the input
pattern. However, the gray bars do not correspond to the
component numbers i and their values do not change. Here,
the number of white bars in the bar graph of each reference
pattern is set to the same value  so that the sensitivity to the
“wobble” in the reference patterns may be equated regard-
less of the position of the normal distribution. In FIGS. 40(c)
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to 40(f), for an example, each reference pattern includes
seven white bars (w=7). Note that “w” shown in FIG. 29
corresponds to “w” shown in FIGS. 40(c) to 40(f).

To be more specific, in order to check changes in the
values of the kurtosis geometric distances dA(1-2), dA(3-4),
dA(1-3), dA(1-4), dA(2-3) and dA(2-4) between the stan-
dard sounds shown in FIG. 35 while changing the value m
shown in FIGS. 40(c) to 40(f), a value (d"1-d72) of a
difference in mean is obtained by subtracting a kurtosis
geometric distance mean d~2 between the standard sounds
of the same category from a kurtosis geometric distance
mean d~1 between the standard sounds of the different
categories, as shown in equation 39. Next, we obtain the
square root of the sum ((s,%/N,)+(s,*/N,)) of a value (s,*/
N,) obtained by dividing a sample variance s, of the
kurtosis geometric distance between the standard sounds of
the different categories by the sample size N, and a value
(s,>/N,) obtained by dividing a sample variance s, of the
kurtosis geometric distance between the standard sounds of
the same category by the sample size N,. Then, a Welch’s
test statistic T(w) is calculated as a value of an objective
function by dividing the above value of the difference in
mean by the above square root.

FIG. 36 is a schematic diagram showing a frequency
distribution of the distance values between the standard
sounds of the different categories and a frequency distribu-
tion of the distance values between the standard sounds of
the same category, which are drawn by using the respective
means d”1 and d72 and the respective sample standard
deviations s, and s,. From FIG. 36, we can find that, when
T(w) reaches its maximum as the value of the numerator of
T(w) shown in equation 39 increases and, simultaneously,
the value of the denominator decreases, the distance between
the standard sounds of the same category is shortened and,
simultaneously, the distance between the standard sounds of
the different categories is elongated. Therefore, the kurtosis-
weighting curve is optimized, which is created based on the
value o that maximizes the value of T(w). A generalized
expression of the above discussion is as follows. Specifi-
cally, the problem of obtaining an optimum kurtosis-weight-
ing curve boils down to the optimization problem of obtain-
ing the value of the variable w that maximizes the objective
function when T(w) is the objective function.

FIG. 41 shows processing procedures for obtaining an
optimum value of ® by use of N1 standard sounds (normal
sounds) belonging to category 1 and N2 standard sounds
(abnormal sounds) belonging to category 2. Note that N1=2
and N2=2. Also, the number of bars m shown in FIG. 3 is
set to 257, and power spectra of the standard sounds are
created. In FIG. 41, an optimum value is obtained by
running the value o from 3 to 255.

In Step 1 of FIG. 41, (N14N2) power spectra are created
by recording the N1 standard sounds (normal sounds)
of category 1 and the N2 standard sounds (abnormal
sounds) of category 2.

In Step 2, @=3 is set as an initial value.

In Step 3, the kurtosis geometric distance dA for each
combination of two from the (N1+N2) standard sounds
is calculated using the processing procedures shown in
FIG. 29, and the mean and sample variance of the
kurtosis geometric distances between the standard
sounds of the different categories and those of kurtosis
geometric distances between the standard sounds of the
same category are obtained using the same way as in
equation 39.

In Step 4, Welch’s test statistic T(w) is calculated using
the same way as in equation 39.
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In Steps 5 and 6, the processing of Steps 3 and 4 is
repeated while increasing the value w to 255 with an
increment of 2.

In Step 7, the value w that maximizes the value of T(w)
is obtained as an optimum value wk.

Note that the kurtosis-weighting curve is an even function
and the skewness-weighting curve is an odd function. There-
fore, as for the kurtosis-weighting vector in the prior art (the
gazette of Japanese Patent No. 3422787), a kurtosis-
weighted standard pattern vector and a kurtosis-weighted
input pattern vector are created by using equation 38 instead
of equation 37.

EXPERIMENT EXAMPLE 9

Next, results of experiment for obtaining the optimum
value of @ will be described. Specifically, the experiment
was conducted following the processing procedures shown
in FIG. 41, in which 10 normal standard sounds (belonging
to category 1) were recorded by repeatedly hitting the same
spot of a normal concrete structure, 10 abnormal standard
sounds (belonging to category 2) were recorded by repeat-
edly hitting the same spot of an abnormal concrete structure,
and then the optimum value of ® was obtained by using
these 20 standard sounds. Here, a power spectrum of the
standard sounds was created by setting the number of the
bars shown in FIG. 3 to m=257. Note that these 20 standard
sounds are identical to the 20 standard sounds used in
Experiment Example 8. In the case of this experiment, when
considered as in FIG. 35, 10x10=100 values are calculated
as the kurtosis geometric distances dA between the standard
sounds of the different categories, and 2x, ,¢,=2x10x9/2=90
values are calculated as the kurtosis geometric distances dA
between the standard sounds of the same category. Then,
using the same way as in equation 39, the mean and sample
variance of the kurtosis geometric distances between the
standard sounds of the different categories and those of
kurtosis geometric distances between the standard sounds of
the same category were obtained, and Welch’s test statistic
T(w) was calculated. FIG. 42 shows the result of calculating
the value of objective function T(w) while increasing the
value co shown in FIGS. 40(c) to 40(f) from 3 to 255 with
an increment of 2. From FIG. 42, we can find that the value
of T(w) reaches its maximum when w=91. Therefore, the
optimum value is set to wk=91 and the optimum kurtosis-
weighting curve is created using this value.

Note that, instead of Welch’s test statistic T(w), a recog-
nition rate R(w) maybe used as the objective function. In this
case, for example, the N1 standard sounds (normal sounds)
belonging to category 1 and the N2 standard sounds (abnor-
mal sounds) belonging to category 2 are recorded in
advance, and kurtosis geometric distances dA between one
input sound (normal sound) different from those standard
sounds and the above (N14N2) standard sounds are calcu-
lated. Then, when the standard sound corresponding to the
minimum value among the (N14+N2) kurtosis geometric
distances dA thus obtained belongs to category 1, the input
sound is judged to belong to category 1 (to be a normal
sound). On the other hand, when the standard sound corre-
sponding to the minimum value belongs to category 2, the
input sound is judged to belong to category 2 (to be an
abnormal sound). Similarly, kurtosis geometric distances dA
between another input sound (abnormal sound) different
from the above and the above (N1+N2) standard sounds are
calculated. Then, when the standard sound corresponding to
the minimum value among the (N1+N2) kurtosis geometric
distances dA thus obtained belongs to category 1, the input
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sound is judged to belong to category 1 (to be a normal
sound). On the other hand, when the standard sound corre-
sponding to the minimum value belongs to category 2, the
input sound is judged to belong to category 2 (to be an
abnormal sound). Similarly, the above recognition experi-
ment is conducted using a number of input sounds (normal
sounds and abnormal sounds), and the recognition rate R(w)
is calculated using a percentage at which the input sounds
(normal sounds and abnormal sounds) are judged correctly.
In this case, the value of the objective function R(w) is
calculated by increasing the value o from 3 to 255 with an
increment of 2. Thus, the value w that maximizes the value
of R(w) is obtained as the optimum value wk.

In the prior art (the gazette of Japanese Patent No.
3422787), a normal distribution having the optimum value
wk thus obtained is created, a reference pattern vector
having component values representing the above normal
distribution is created, and a kurtosis-weighting vector hav-
ing a value of a change rate of “kurtosis” of the above
reference pattern vector as a component is created. Next, a
kurtosis-weighted standard pattern vector is created by prod-
uct-sum operation using the component value of the kurto-
sis-weighting vector and the component value of the original
standard pattern vector. Similarly, a kurtosis-weighted input
pattern vector is created by product-sum operation using the
component value of the same kurtosis-weighting vector and
the component value of the original input pattern vector.
Then, an angle between the kurtosis-weighted standard
pattern vector and the kurtosis-weighted input pattern vector
is calculated, and the degree of similarity between the
original standard pattern vector and the original input pattern
vector is detected as a kurtosis geometric distance value.

{Combining Optimum Skewness-Weighted Standard and
Input Pattern Vectors and Optimum Kurtosis-Weighted
Standard and Input Pattern Vectors}

Therefore, by use of the method of the present invention,
optimum skewness-weighted standard and input pattern
vectors (equation 30) are created by product-sum operation
using the component value of skewness-weighting vector
(equation 36) having the optimum value ws and the com-
ponent value of the original standard and input pattern
vectors (equation 2). Similarly, by use of the method of the
prior art (the gazette of Japanese Patent No. 3422'87),
optimum kurtosis-weighted standard and input pattern vec-
tors (equation 30) can be created by product-sum operation
using the component value of the kurtosis-weighting vector
(equation 36) having the optimum value wk and the com-
ponent values of the original standard and input pattern
vectors (equation 2) .

Next, as shown in the first and second equations in the
following equation 40, normalized component values sogd
(j) and xogd(j) are calculated by dividing the component
value sog(j) (=1, 2, . . . , m) of the skewness-weighted
standard-pattern vector sog created using the optimum value
us and the component value xog(j) =1, 2, . . ., m) of the
skewness-weighted input pattern vector xog created using
the same optimum value ws by the magnitudes of the
respective vectors. Similarly, as shown in the third and
fourth equations in equation 40, normalized component
values sogd (m+j) and xogd (m+j) are calculated by dividing
the component value sog(l) (=1, 2, . . . , m) of the
kurtosis-weighted standard pattern vector sog created using
the optimum value wk and the component value xog(j) (j=1,
2, ..., m) of the kurtosis-weighted input pattern vector xog
created using the same optimum value wk by the magnitudes
of the respective vectors.
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When the skewness-weighted standard pattern vector s,
is created using the optimum value w,, and the skew-
ness-weighted input pattern vector x,,, is created using
the optimum value w,,

Sogag) a0d X,z are determined as follows:

SogaySoggySog]

Fogd(yFog(y Fog]

When the kurtosis-weighted standard pattern vector s, is
created using the optimum value w,, and the kurtosis-
weighted input pattern vector X, is created using the
optimum value w,,

Sogd(msy) A4 X, g7,y are determined as follows:

S ogdtmey~SogGy 1S og!

X ogdoniyFogy Fog| {Equation 40}

Then, a dual and weighted standard pattern vector sogd
having sogd(j) and sogd(m+j) as components and a dual and
weighted input pattern vector xogd having xogd(j) and
xogd(m+j) as components are created and represented as the
following equation 41.

Sogd(Sogd(ly Sogd@y « + -
Sogd(majy * * * 1

Sogd(my Sogd(m+ly * =+ s
Sogd(mm)
xogd:('xogd(l)’ Xogd2y * + * » Kogd(mny Fogdomtly * * * »

Xogdomasy * + * s {Equation 41}

Xogd(m+m)

In equation 41, the first to m-th component values of the
dual and weighted standard pattern vector sogd are equal to
the first to m-th normalized component values of the skew-
ness-weighted standard pattern vector created using the
optimum value ws, respectively. Also, the (m+1)-th to
(m+m)-th component values of the same vector sogd are
equal to the first to m-th normalized component values of the
kurtosis-weighted standard pattern vector created using the
optimum value wk, respectively. Similarly, the first to m-th
component values of the dual and weighted input pattern
vector xogd are equal to the first to m-th normalized com-
ponent values of the skewness-weighted input pattern vector
created using the optimum value ws, respectively. Also, the
(m+1)-th to (m+m)-th component values of the same vector
xogd are equal to the first to m-th normalized component
values of the kurtosis-weighted input pattern vector created
using the optimum value wk, respectively.

Namely, the dual and weighted standard pattern vector is
a composite vector created by combining the skewness-
weighted standard pattern vector and the kurtosis-weighted
standard pattern vector, which are obtained by normaliza-
tion. Similarly, the dual and weighted input pattern vector is
a composite vector created by combining the skewness-
weighted input pattern vector and the kurtosis-weighted
input pattern vector, which are obtained by normalization.
Therefore, the dual and weighted standard/input pattern
vectors each have (m+m) pieces of component values.

FIG. 43 shows a calculation flowchart for creating the
dual and weighted standard pattern vector. Note that the
numbers in the figure are the equation numbers. From FIG.
43, we can find that the dual and weighted standard pattern
vector sogd is created by combining: the skewness-weighted
standard pattern vector sog, which is calculated by product-
sum operation using the original standard pattern vector so
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and the skewness-weighting vector g having as a component
a value of a change rate of skewness of the normal distri-
bution having the optimum value ws; and the kurtosis-
weighted standard pattern vector sog, which is calculated by
product-sum operation using the original standard pattern
vector so and the kurtosis-weighting vector g having as a
component a value of a change rate of kurtosis of the normal
distribution having the optimum value wk, where the skew-
ness-weighted standard pattern vector sog and the kurtosis-
weighted standard pattern vector sog are normalized through
division by the magnitudes of the respective vectors.

Moreover, FIG. 44 shows the flow of product-sum opera-
tions given by equations 37 and 38. Note that the curve on
the left side of the figure is the skewness-weighting curve
shown in FIG. 22(c), and the curve on the right side of the
figure is the kurtosis-weighting curve shown in FIG. 28(c).
Symbol V (inverse triangle) is a multiplier and symbol X
(summation codes) is an adder. On the left side of FIG. 44,
by using multiplier V, we calculate the product Sign (i-j)
-gk0-so0i using the component value Sign (i-j)-gkO of skew-
ness-weighting vector and the component value soi of
original standard pattern vector. By using adder X, we
calculate the product-sum by addition of the product Sign
(i-j)-gk0O-soi for i (i=1, 2, . . . , m), and use it as the
component value sog (j) of skewness-weighted standard
pattern vector. Similarly, on the right side of FIG. 44, we
calculate the kurtosis-weighted standard pattern vector by
the product-sum operation using the kurtosis-weighting vec-
tor and the original standard pattern vector. From FIG. 44,
it is discovered that the component value sog (j) of the
skewness-weighted standard pattern vector and the compo-
nent value sog (j) of the kurtosis-weighted standard pattern
vector are calculated from soi by weighting using the
skewness-weighting curve and the kurtosis-weighting curve.

FIG. 45 shows a calculation flowchart for creating the
dual and weighted input pattern vector. Note that the num-
bers in the figure are the equation numbers. From FIG. 45,
we can find that the dual and weighted input pattern vector
xogd is created by combining: the skewness-weighted input
pattern vector xog, which is calculated by product-sum
operation using the original input pattern vector xo and the
skewness-weighting vector g having as a component a value
of a change rate of skewness oof the normal distribution
having the optimum value ws; and the kurtosis-weighted
input pattern vector xog, which is calculated by product-sum
operation using the original input pattern vector xo and the
kurtosis-weighting vector g having as a component a value
of'a change rate of kurtosis of the normal distribution having
the optimum value wk, where the skewness-weighted input
pattern vector xog and the kurtosis-weighted input pattern
vector xog are normalized through division by the magni-
tudes of the respective vectors.

Moreover, FIG. 46 shows the flow of product-sum opera-
tions given by equations 37 and 38. Note that the curve on
the left side of the figure is the skewness-weighting curve
shown in FIG. 22(c), and the curve on the right side of the
figure is the kurtosis-weighting curve shown in FIG. 28(c).
Symbol V (inverse triangle) is a multiplier and symbol X
(summation codes) is an adder. On the left side of FIG. 46,
by using multiplier V, we calculate the product Sign(i-j)
-gk0-x01 using the component value Sign(i-j)-gkOof skew-
ness-weighting vector and the component value xoi of
original input pattern vector. By using adder X, we calculate
the product-sum by addition of the product Sign(i-j)-gkO-xoi
fori (i=1, 2, . . ., m), and use it as the component value
x0g(j) of skewness-weighted input pattern vector. Similarly,
on the right side of FIG. 46, we calculate the kurtosis-
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weighted input pattern vector by the product-sum operation
using the kurtosis-weighting vector and the original input
pattern vector. From FIG. 46, it is discovered that the
component value xog(j) of the skewness-weighted input
pattern vector and the component value xog(j) of the kur-
tosis-weighted input pattern vector are calculated from xoi
by weighting using the skewness-weighting curve and the
kurtosis-weighting curve.

{Selecting Component Positions of Standard and Input
Patterns that Improve Similarity Detection Accuracy}

In the prior arts, as described above referring to FIGS. 53
to 55 and TABLE 1, with regard to the relative positional
relationship between the reference pattern and the standard
and input patterns during the moving of the center axis of the
reference pattern, the component positions of the standard
and input patterns that improve similarity detection accuracy
are not distinguished from those that lower the similarity
detection accuracy. Next, a method for solving this problem
will be described. First, a selecting vector (binary vector) b
having 0 or 1 as a component is created and represented as
the following equation 42. Note that the number of compo-
nents of the selecting vector b is equal to the number (m+m)
of components of the dual and weighted standard/input
pattern vectors shown in equation 41.

"
{Equation 42}

Further, as shown in the following equation 43, a value of
the product of a component value b(j) having the component
number j (=1, 2, . . . , m+m) of the above selecting vector
b and a component value sogd(j) having the same compo-
nent number j of the above dual and weighted standard
pattern vector sogd is calculated as sogb(j). Similarly, a
value of the product of the component value b(j) having the
component number j (j=1, 2, . . . , m+m) of the above
selecting vector b and a component value xogd(j) having the
same component number j of the above dual and weighted
input pattern vector xogd is calculated as xogb(j).

Sagb(n DGy Sogd()

Fogbiy =Dy Fogag) {Equation 43}

Then, a dual and selected standard pattern vector sogb
having sogb(j) (j=1, 2, . . ., m+m) as a component and a dual
and selected input pattern vector xogb having xogb(j) (=1,
2,..., m+m) as a component are created and represented
as the following equation 44.

Sogb:(sogb(l)x Sogh(2y + * + s Sogb(y *+ + * Sogb(my Sogh

mrl), .., Sogbuisy = - 1 SoghGuim)
Xogb™Xogn(1y Yogb@y - + -+ Xogb(y + + - » Xogh(my Yogh )

Gy, ., Kogb(magy -+ - » Kogb(mem) {Equation 44}
G=1,2,3,..., m)

Lastly, an angle between the above dual and selected
standard pattern vector sogb and the above dual and selected
input pattern vector xogb is calculated by the following
equation 45 and set as a geometric distance value dA
between the original standard pattern vector so and the
original input pattern vector xo.

w
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m+m

Z Sogh(j) * Xogh(j)

J=1
mt+m
2 (ogn(p)®
=1

m+m
\/ 3 (Sognp)
=1

FIG. 47 shows a calculation flowchart for the geometric
distance. Note that the numbers in the figure are the equation
numbers. From FIG. 47, we can find that the geometric
distance dA is obtained as an angle between: the dual and
selected standard pattern vector sogb obtained by calculating
the product of the selecting vector (binary vector) b having
0 or 1 as a component and the dual and weighted standard
pattern vector sogd, the two factors having the same com-
ponent number; and the dual and selected input pattern
vector xogb obtained by calculating the product of the same
selecting vector (binary vector) b and the dual and weighted
input pattern vector xogd, the two factors having the same
component number. In short, the geometric distance value
dA between the original standard pattern vector so and the
original input pattern vector xo can be calculated through the
processing procedures of FIGS. 43, 45 and 47.

FIGS. 54(b) to 54(d) and TABLE 1 show a phenomenon
that the value of the kurtosis does not change monotonically
as the “difference” between peaks of the standard and input
patterns increases, and FIGS. 55(b) to 55(d) and TABLE 1
show a phenomenon that the value of the skewness does not
change monotonically as the “difference” between peaks of
the standard and input patterns increases. Here, consider-
ation will be made that, in order to distinguish the compo-
nent positions of the standard and input patterns that
improve similarity detection accuracy from those that lower
the similarity detection accuracy with regard to the relative
positional relationship between the reference pattern and the
standard and input patterns during the moving of the center
axis of the reference pattern, the component values of the
dual and weighted standard/input pattern vectors, which
improve the similarity detection accuracy, are selected and
those that lower the similarity detection accuracy are
excluded. Thus, the component value of the selecting vector
shown in equation 42 is set to 1 in the case of selection, and
is set to O in the case of exclusion. Next, we explain a
method for determining the component value of the select-
ing vector to be 1 or 0.

In inspection by hitting a concrete structure using a
hammer, generally, a power spectrum changes subtly with
each hit even at the same spot of the same structure.
Therefore, a method is usually adopted wherein more than
one normal standard sound is registered by repeatedly
hitting the same spot of a normal structure and more than
one abnormal standard sound is registered by repeatedly
hitting the same spot of an abnormal structure. Moreover, in
voice recognition, a power spectrum changes subtly with
each utterance of the same voice. Therefore, a method is
usually adopted wherein a number of persons repeatedly
produce the same voice and more than one standard sound
is registered for each voice. Note that, in the description thus
far, the method for calculating the geometric distance value
dA between the standard and input sounds has been
described. Alternatively, we can replace the input sound by
the standard sound and, using the same method, calculate a
geometric distance value dA between two standard sounds.

For example, assuming that a group of normal standard
sounds is category 1, the upper diagrams of FIG. 35 show
two examples of a power spectrum of a normal sound, which

{Equation 45}

cos(ds) =
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are set as standard sounds 1 and 2 belonging to category 1,
respectively. Also, assuming that a group of abnormal stan-
dard sounds is category 2, the lower diagrams of FIG. 35
show two examples of a power spectrum of an abnormal
sound, which are set as standard sounds 3 and 4 belonging
to category 2, respectively. Note that, in FIG. 35, geometric
distances between the standard sounds are schematically
depicted respectively as dA(1-2), dA(3-4), dA(1-3), dA(1-
4), dA(2-3) and dA(2-4). dA(1-2) indicated by the solid
arrow denotes the geometric distance between the normal
standard sounds 1 and 2 belonging to the same category.
dA(3-4) indicated by the solid arrow denotes the geometric
distance between the abnormal standard sounds 3 and 4
belonging to the same category. dA(1-3) and dA(1-4) indi-
cated by the dashed arrows denote the geometric distances
between the normal standard sound 1 and the abnormal
standard sounds 3 and 4 belonging to the different catego-
ries. dA(2-3) and dA(2-4) indicated by the dashed arrows
denote the geometric distances between the normal standard
sound 2 and the abnormal standard sounds 3 and 4 belonging
to the different categories.

Here, if the distance between the standard sounds of the
same category is shortened, and simultaneously, the distance
between the standard sounds of the different categories is
elongated, then, as a result, separation property of the
standard sound of the same category and the standard sound
of the different categories is improved, and thus recognition
performance when an input sound is given is improved.

Next, a state of separation of the standard sounds of the
same category from the standard sounds of the different
categories is checked while changing the component value
of the selecting vector to 1 or 0.

To be more specific, in order to check changes in the
values of the geometric distances dA(1-2), dA(3-4), dA(1-
3), dA(1-4), dA(2-3) and dA(2-4) between the standard
sounds shown in FIG. 35 while changing the component
value b(j) (j=1, 2, . . ., m+m) of the selecting vector b shown
in equation 42 to 1 or 0, a value (d"1-d"2) of a difference in
mean is obtained by subtracting a geometric distance mean
d~2 between the standard sounds of the same category from
a geometric distance mean d~1 between the standard sounds
of the different categories, as shown in the following equa-
tion 46. Next, we obtain the square root of the sum ((s,*/
N,)+(s,*/N,)) of a value (s,*/N,) obtained by dividing a
sample variance s, of the geometric distance between the
standard sounds of the different categories by the sample
size N| and a value (s,*/N,) obtained by dividing a sample
variance s,> of the geometric distance between the standard
sounds of the same category by the sample size N,. Then, a
Welch’s test statistic T(b(1), b(2), . . ., b(m+m)) is calculated
as a value of an objective function by dividing the above
value of the difference in mean by the above square root.

T(bays by -« s Bjys - s Bimys Pmatys - > {Equation 46}
di—d,
Dimijys -+ s Bemimy) = ——=
53
Ny N>
(j=12,3,... .m)

FIG. 36 is a schematic diagram showing a frequency
distribution of the distance values between the standard
sounds of the different categories and a frequency distribu-
tion of the distance values between the standard sounds of
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the same category, which are drawn by using the respective
means d™1 and d72 and the respective sample standard
deviations s, and s,. From FIG. 36, we can find that, when
T(b(1),b(2), ..., b(m+m)) reaches its maximum as the value
of the numerator of T(b(1), b(2), . . ., b(m+m)) shown in
equation 46 increases and, simultaneously, the value of the
denominator decreases, the distance between the standard
sounds of the same category is shortened and, simultane-
ously, the distance between the standard sounds of the
different categories is elongated. Therefore, the selecting
vector is optimized, which is created based on the values
b(1), b(2), . . . , b(m+m) that maximize the value of T(b(1),
b(2), ..., b(m+m)). A generalized expression of the above
discussion is as follows. Specifically, the problem of obtain-
ing an optimum selecting vector boils down to the optimi-
zation problem of obtaining the component value b (j) (=1,
2, ..., m+m) of the selecting vector b that maximizes the
objective function when T(b(1), b(2), . . . , b(m+m)) is the
objective function.

Incidentally, in the examples of experiment of this
embodiment, the power spectra of the standard sounds are
created by setting the number of bars in each bar graph
shown in FIG. 3 to m=257. In this case, in order to calculate
the value of the objective function T(b(1), b(2), . . .,
b(m+m)) while changing the component value b (§) (j=1,
2, ..., m+m) of the selecting vector b shown in equation 42
to 1 or 0, the objective function T(b(1), b(2), . . . , b(m+m))
needs to be calculated in “2 to the 514-th power” ways,
which makes it difficult to perform the calculation consid-
ering computation time. On the other hand, as for the
optimization problem, there have been proposed numerical
solutions such as a steepest descent method and a Newton
method in the field of numerical calculation methods. These
numerical solutions change a value of a variable in a
direction in which the objective function rapidly decreases
or increases, and are intended to calculate an optimum value
of the variable with a small number of calculations. In this
embodiment, by use of such numerical solutions, an opti-
mum component value b (j) =1, 2, . . . , m+m) can be
efficiently calculated. FIG. 48 shows an example of a
method for calculating an optimum value with a small
number of calculations.

FIG. 48 shows processing procedures for obtaining an
optimum value of b(j) (=1, 2, . . . , m+m) by use of N1
standard sounds (normal sounds) belonging to category 1
and N2 standard sounds (abnormal sounds) belonging to
category 2. Note that N1<2 and N2<2. Also, the number m
of the bars shown in FIG. 3 is set to 257, and power spectra
of the standard sounds are created. In FIG. 48, an optimum
value is obtained by running the value j from 1 to m+m.

In Step 1 of FIG. 48, (N14N2) power spectra are created
by recording N1 standard sounds (normal sounds) of
category 1 and N2 standard sounds (abnormal sounds)
of category 2.

In Step 2-1, an optimum value ws is obtained through the
processing procedures shown in FIG. 37.

In Step 2-2, an optimum value wk is obtained through the
processing procedures shown in FIG. 41. The process-
ing from Step 3 to Step 9 is performed using the
optimum values ws and wk.

In Step 3, all the component values of the selecting vector
are set to 1. Namely, b(j)=1 (=1, 2, . . . , m+m). Then,
the geometric distance dA for each combination of two
from the (N1+N2) standard sounds is calculated using
the processing procedures shown in FIGS. 43 to 47, and
the mean and sample variance of the geometric dis-
tances between the standard sounds of the different
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categories and those of geometric distances between
the standard sounds of the same category are obtained
using the same way as in equation 39. Then, a Welch’
s test statistic (equation 46) is calculated as T1. Namely,
T1=T(1,1,1,...,1,1,1,1,...,1,1, 1).

In Step 4, j=1 is set as an initial value.

In Step 5, the j-th component of the selecting vector is set
to 0, and the components other than the j-th component
are set to 1. Namely, b (j)=0 and b(k)=1(k=j). Then, the
geometric distance dA for each combination of two
from the (N1+N2) standard sounds is calculated using
the processing procedures shown in FIGS. 43 to 47, and
the mean and sample variance of the geometric dis-
tances between the standard sounds of the different
categories and those of geometric distances between
the standard sounds of the same category are calculated
using the same way as in equation 39. Then, a Welch’s
test statistic (equation 46) is calculated as TO (j).
Namely, TOG)=T(1,1,1,...,1,0,1,1,..., 1,1, 1).

In Step 6, bopt(j)=1 when T1>T0(j), and bopt(j)=0 when
T1<TOG).

In Steps 7 and 8, the processing of Steps 5 and 6 is
repeated while increasing the value j to m+m with an
increment of 1.

In Step 9, a selecting vector having bopt(j) =1, 2, . . .,
m+m) as a component is set as an optimum selecting
vector.

EXAMPLE 10 OF EXPERIMENT

Next, results of experiment for obtaining the optimum
value of b(j) (=1, 2, . . . , m+m) will be described.
Specifically, the experiment was conducted following the
processing procedures shown in FIG. 48, in which 10
normal standard sounds (belonging to category 1) were
recorded by repeatedly hitting the same spot of a normal
concrete structure, 10 abnormal standard sounds (belonging
to category 2) were recorded by repeatedly hitting the same
spot of an abnormal concrete structure, and then the opti-
mum value of b(j) =1, 2, . . . , m+m) was obtained by using
these 20 standard sounds. Here, a power spectrum of the
standard sounds was created by setting the number of the
bars shown in FIG. 3 to m=257. Note that these 20 standard
sounds are identical to the 20 standard sounds used in
Experiment Example 8. Moreover, the geometric distance
dA is calculated using the optimum value ws=41 obtained
from FIG. 38 and the optimum value wk=91 obtained from
FIG. 42. In the case of this experiment, when considered as
in FIG. 35, 10x10=100 values are calculated as the geomet-
ric distances dA between the standard sounds of the different
categories, and 2x,,C,=2x10x9/2=90 values are calculated
as the geometric distances dA between the standard sounds
of the same category. Then, using the same way as in
equation 39, the mean and sample variance of the geometric
distances between the standard sounds of the different
categories and those of geometric distances between the
standard sounds of the same category were obtained, and
Welch’s test statistics T1 and T0 (j) =1, 2, . . ., m+m) were
calculated by using equation 46. Next, the values of T1 and
TO (j) are compared to obtain a value of bopt(j) (=1,
2, ..., m+m). TABLE 3 shows the result of calculating the
values of T1, T0 (j) and bopt(j). Namely, TABLE 3 is a table
showing an experimental result of the optimum value of the
selecting vector in example 10 of experiment. However, due
to page space limitations, TABLE 3 shows the result when
the value j is increased with an increment of 8 from 8 to 256
and from 257+8 to 257+256. The bottom right (combined
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result) of TABLE 3 shows that the value of objective
function when all the component values of the selecting
vector are set to 1 is T1=49.7822, the value of the objective
function when all the component value of the selecting
vector are set to the optimum value bopt(j) G=1, 2, . . .,
m+m) is 70.8422, and the value of the objective function is
increased by 42.3% as a result of optimization.

TABLE 3

j T1 TO(@) bopt(j)
8 49.7822 49.7813 1
16 49.7822 49.7852 0
24 49.7822 49.7913 0
32 49.7822 49.7996 0
40 49.7822 49.8040 0
48 49.7822 49.8246 0
56 49.7822 49.9036 0
64 49.7822 49.8361 0
72 49.7822 49.3568 1
30 49.7822 49.1469 1
38 49.7822 49.3833 1
96 49.7822 49.5974 1
104 49.7822 49.7030 1
112 49.7822 49.8280 0
120 49.7822 49.6516 1
128 49.7822 47.9359 1
136 49.7822 47.1830 1
144 49.7822 48.6309 1
152 49.7822 49.5510 1
160 49.7822 49.9278 0
168 49.7822 50.0769 0
176 49.7822 50.3147 0
184 49.7822 50.5015 0
192 49.7822 50.2090 0
200 49.7822 50.0068 0
208 49.7822 49.9954 0
216 49.7822 50.1386 0
224 49.7822 50.2015 0
232 49.7822 50.2757 0
240 49.7822 50.1494 0
248 49.7822 50.2369 0
256 49.7822 50.4733 0
257 + 8 49.7822 49.7725 1
257 + 16 49.7822 49.7710 1
257 + 24 49.7822 49.7700 1
257 + 32 49.7822 49.7707 1
257 + 40 49.7822 49.7743 1
257 + 48 49.7822 49.7791 1
257 + 56 49.7822 49.7827 1
257 + 64 49.7822 49.7859 0
257+ 72 49.7822 49.7866 0
257 + 80 49.7822 49.7830 0
257 + 88 49.7822 49.7653 1
257 + 96 49.7822 49.7335 1
257 + 104 49.7822 49.7195 1
257 + 112 49.7822 49.7292 1
257 + 120 49.7822 49.7521 1
257 + 128 49.7822 49.7714 1
257 + 136 49.7822 49.7779 1
257 + 144 49.7822 49.7788 1
257 + 152 49.7822 49.7787 1
257 + 160 49.7822 49.7670 1
257 + 168 49.7822 49.7491 1
257 + 176 49.7822 49.7453 1
257 + 184 49.7822 49.7651 1
257 + 192 49.7822 49.7905 0
257 + 200 49.7822 49.8017 0
257 + 208 49.7822 49.7950 0
257 + 216 49.7822 49.7830 0
257 + 224 49.7822 49.7762 1
257 + 232 49.7822 49.7781 1
257 + 240 49.7822 49.7758 1
257 + 248 49.7822 49.7767 1
257 + 256 49.7822 49.7826 0

Combined result 49.7822 70.8422

In the above example 10 of experiment, processing is
performed to select the component value that improves the
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similarity detection accuracy and excluding the component
value that lowers the similarity detection accuracy in the
dual and weighted standard/input pattern vectors, in order to
distinguish the component positions of the standard/input
patterns that improve the similarity detection accuracy from
those that lower the similarity detection accuracy with
regard to the relative positional relationship between the
reference pattern and the standard/input patterns during the
moving of the center axis of the reference pattern. As a
result, we can find that the distance between the standard
sounds of the same category is shortened, and simultane-
ously, the distance between the standard sounds of the
different categories is elongated, then, as a result, separation
property of the standard sounds of the same category and the
standard sounds of the different categories is improved, and
thus recognition performance when an input sound is given
is improved.

Note that, instead of Welch’s test statistics T1 and T0 (j)
(=1, 2, . . ., m+m), the recognition rates R1 and R0() (j=1,
2, ..., m+m) may be used as objective functions. In this
case, for example, the N1 standard sounds (normal sounds)
belonging to category 1 and the N2 standard sounds (abnor-
mal sounds) belonging to category 2 are recorded in
advance, and geometric distances dA between one input
sound (normal sound) different from those standard sounds
and the above (N1+N2) standard sounds are calculated.
Then, when the standard sound corresponding to the mini-
mum value among the (N1+N2) geometric distances dA thus
obtained belongs to category 1, the input sound is judged to
belong to category 1 (to be a normal sound). On the other
hand, when the standard sound corresponding to the mini-
mum value belongs to category 2, the input sound is judged
to belong to category 2 (to be an abnormal sound). Similarly,
geometric distances dA between another input sound (abnor-
mal sound) different from the above and the above (N1+N2)
standard sounds are calculated. Then, when the standard
sound corresponding to the minimum value among the
(N1+N2) geometric distances dA thus obtained belongs to
category 1, the input sound is judged to belong to category
1 (to be a normal sound). On the other hand, when the
standard sound corresponding to the minimum value
belongs to category 2, the input sound is judged to belong to
category 2 (to be an abnormal sound). Similarly, the above
recognition experiment is conducted using a number of input
sounds (normal sounds and abnormal sounds), and the
recognition rates R1 and RO(j) are calculated using a per-
centage at which the input sounds (normal sounds and
abnormal sounds) are judged correctly. In this case, the
values of the objective functions R1 and R0(j) are calculated
by increasing the value j from 1 to m+m with an increment
of 1, and the values of R1 and R0(j) are compared to obtain
the optimum value bopt(j) (=1, 2, . . . , m+m).

As described above, in the present invention, the skew-
ness-weighted standard/input pattern vectors and the kurto-
sis-weighted standard/input pattern vectors are created using
the optimized skewness-weighting vector and kurtosis-
weighting vector, and the magnitudes of these four vectors
are normalized to 1. Next, the skewness-weighted standard
pattern vector and the kurtosis-weighted standard pattern
vector, which are obtained by normalization, are combined
to create a dual and weighted standard pattern vector.
Similarly, the skewness-weighted input pattern vector and
the kurtosis-weighted input pattern vector, which are
obtained by normalization, are combined to create a dual and
weighted input pattern vector. Further, dual and selected
standard/input pattern vectors are created by selecting the
component values that improve the similarity detection
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accuracy and excluding the component values that lower the
similarity detection accuracy (setting the component values
to 0) in the above dual and weighted standard pattern vector
and dual and weighted input pattern vector . Then, the angle
between the dual and selected standard pattern vector and
the dual and selected input pattern vector is numerically
evaluated as a geometric distance value between the original
standard pattern vector and the original input pattern vector.

{Recognizing Unknown Input Sound}

In Japanese vowel recognition in the voice recognition,
unknown input voices are recognized to belong to any of the
five categories, /a/, /i/, /u/, /e/ and /o/. In this embodiment,
such a condition is referred to as “the number of categories
is 5”. Meanwhile, in inspection by hitting a concrete struc-
ture using a hammer, a sound generated by hitting the
concrete structure using the hammer changes with the
amount and depth of reinforcement bars buried inside the
concrete. Therefore, in many cases, the number of categories
of'a normal sound is 2 or more. Moreover, a sound generated
by hitting the concrete structure using the hammer changes
with the size and depth of damage such as a cavity inside the
concrete. Therefore, in many cases, the number of categories
of an abnormal sound is 2 or more. Next, processing
procedures for recognizing unknown input sounds by using
geometric distances according to the present invention will
be described for the case where the number of categories is
2 and the case where the number of categories is 3 or more.

First, the processing procedures for recognizing unknown
input sounds will be described for the case where the number
of categories is 2. FIG. 49 shows the processing procedures
for registering in advance N1 standard sounds (normal
sounds) belonging to category 1 and N2 standard sounds
(abnormal sounds) belonging to category 2 and, when
another unknown input sound is given, recognizing to which
one of categories 1 and 2 the input sound belongs. Note that
N1=2 and N2=2.

In Step 1 of FIG. 49, (N14N2) power spectra are created
in advance by recording N1 standard sounds (normal
sounds) of category 1 (C1) and N2 standard sounds
(abnormal sounds) of category 2 (C2).

In Step 2, an optimum value ws, an optimum value wk and
an optimum value bopt(j) (=1, 2, . . . , m+m) are
calculated in advance using the processing procedures
shown in FIG. 48.

In Step 3, an unknown input sound x is recorded.

In Step 4, geometric distances dA between the input sound
x and each of the above (N1+N2) standard sounds are
calculated, using the optimum value ws, the optimum
value wk and the optimum value bopt(j) =1, 2, . . .,
m+m) and the processing procedures shown in FIGS.
43 to 47.

In Step 5, when the standard sound corresponding to the
minimum value among the (N1+N2) geometric dis-
tances dA thus obtained belongs to category 1 (C1), the
input sound x is judged to belong to category 1 (to be
a normal sound: x&C1), and, when the standard sound
corresponding to the minimum value belongs to cat-
egory 2 (C2), the input sound x is judged to belong to
category 2 (to be an abnormal sound: xEC2).

Next, the processing procedures for recognizing unknown
input sounds will be described for the case where the number
of categories is 3 or more. Even when the number of
categories is 3 or more, distance values between the standard
sounds of the different categories and distance values
between the standard sounds of the same category can be
defined. Therefore, the curves of the objective functions
shown in FIGS. 38 and 42 can be drawn. However, in many
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cases, the positions of peaks of the curves of the objective
functions become unclear as the number of categories
increases, making it difficult to determine the optimum value
of w. Therefore, in this embodiment, the processing proce-
dures for recognizing unknown input sounds will be
described by applying the processing procedures shown in
FIG. 49 to the case where the number of categories is 3 or
more.

FIG. 50 shows, as an example, processing procedures for
registering in advance N1, N2, N3, and N4 standard sounds
(normal sounds or abnormal sounds) belonging to categories
1 to 4 (C1 to C4), respectively, and, when another unknown
input sound is given, recognizing to which one of categories
1 to 4 the input sound belongs or if the input sound does not
belong to any of the categories. Note that N1=2, N2=2,
N3=z2 and N4=2. Moreover, in FIG. 50, Steps 1, 2, 4 and 5
shown in FIG. 49 are performed inside the diamond-shaped
symbols. For example, in the diamond-shaped symbol (deci-
sion symbol) <C1:C3> in Step 3 of FIG. 50, the processing
is performed by replacing C2 by C3 and N2 by N3 in Steps
1, 2, 4 and 5 shown in FIG. 49. Namely, the optimum value
ws, the optimum value wk and the optimum value bopt(j)
(G=1, 2, ..., m+m) are calculated for each diamond-shaped
symbol (decision symbol). Therefore, the optimum value
ws, the optimum value wk and the optimum value bopt(j)
(G=1, 2, . .., m+m) in <C1:C2> are different from those in
<C1:C3>. Moreover, the normal sound and the abnormal
sound in Steps 1, 2, 4 and 5 shown in FIG. 49 may be normal
sound A and normal sound B. Therefore, the processing is
performed by replacing the normal sound and the abnormal
sound in FIG. 49 by normal sound A, normal sound B,
abnormal sound A, abnormal sound B, and the like.

In Step 1 of FIG. 50, an unknown input sound x is

recorded.

In <C1:C2> of Step 2, the processing of Steps 1, 2, 4 and

5 shown in FIG. 49 is performed to judge between
x€C1 and xEC2. The processing moves to <C1:C3> of
Step 3 when x&C1, and moves to <C2:C3> of Step 3
when x€C2.

In <C1:C3> of Step 3, the processing of Steps 1, 2, 4 and

5 shown in FIG. 49 is performed to judge between
x€C1 and xEC3. The processing moves to <C1:C4> of
Step 4 when x&C1, and moves to <C3:C4> of Step 4
when x€C3.

In <C2:C3> of Step 3, the processing of Steps 1, 2, 4 and

5 shown in FIG. 49 is performed to judge between
x€C2 and xEC3. The processing moves to <C2:C4> of
Step 4 when x&C2, and moves to <C3:C4> of Step 4
when x€C3.

In Step 4, the same processing as that of Steps 2 and 3 is

performed.

Step 5 shows the case where x&C4 as an example.

In this case, C4 is fixed in Steps 6, 7 and 8, and processing

of comparison with C1, C2 and C3 is performed again.

In Step 9, a final decision is made that the input sound x

belongs to category 4 (x©C4) when x€C4 in all Steps
6, 7 and 8. Otherwise, a final decision is made that the
input sound x does not belong to any of C1 to C4.

Next, generalization of the flowchart shown in FIG. 50
will be described. In FIG. 49, for the case where the number
of categories is 2, it is determined, when an unknown input
sound is given, to which one of the two categories the input
sound x belongs. Further, in each of Steps 6 to 8 of FIG. 50,
the category to which the input sound x belongs is deter-
mined using the processing procedures shown in FIG. 49.
Then, when it is that the input sound x belongs to the same
category in all of Steps 6 to 8, a final decision is made that
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the input sound x belongs to that category. Here, FIG. 51
shows combinations of Ci (i=1 to 4) and Cj (j=1 to 4,
however, j=1) when Ci is fixed, for the categories 1 to 4 (C1
to C4). For each of the combinations, it is determined by the
processing procedures shown in FIG. 49 to which one of the
two categories (Ci and Cj) the input sound x belongs. Here,
as an example, consideration will be made that, as a result
of fixing C4 and performing the processing shown in FIG.
49 for each of the combinations with C1, C2 and C3, as
shown in FIG. 51(d), x©C4 is determined for all the three
combinations. In order to clearly show this, C4 is circled in
FIG. 51(d). In this case, when the processing shown in FIG.
49 is performed for each of the combinations C1-C4 shown
in FIG. 51(a), C2-C4 shown in FIGS. 51(b) and C3-C4
shown in FIG. 51(c), xEC4 is determined inevitably for all
the combinations. In order to clearly show this, C4 is circled
in FIGS. 51(a) to 51(c). Thus, when a final decision is made
that x&C4 in FIG. 51(d), we can understand that no final
decision is made that x&C1, x&C2 or x=C3 in FIGS. 51(a)
to 51(c). Namely, it is either a final decision is made that the
input sound x belongs to one category or a final decision is
made that the input sound x does not belong to any of the
categories. In other words, no final decision is made that the
input sound x belongs to more than one category.

Based on the above, next, the flowchart shown in FIG. 50
is generalized. FIG. 52 shows processing procedures for
registering in advance N1, . . ., NL standard sounds (normal
sounds or abnormal sounds) belonging to categories 1 to L
(C1 to CL), respectively, and, when another unknown input
sound is given, recognizing to which one of categories 1 to
L the input sound belongs or if the input sound does not
belong to any of the categories. Note that Ni=2 (i=1 to L).
In Step 5 of FIG. 52, Steps 1, 2, 4 and 5 shown in FIG. 49
are performed inside the diamond-shaped symbols. There-
fore, in the diamond-shaped symbol (decision symbol) <Ci:
Cj> in Step 5 of FIG. 52, the processing is performed by
replacing C1 and C2 by Ci and Cj and N1 and N2 by Ni and
Nj in Steps 1, 2, 4 and 5 shown in FIG. 49. Namely, the
optimum value ws, the optimum value wk and the optimum
value bopt(j) G=1, 2, . . . , m+m) are calculated for each
combination of Ci and Cj. Therefore, the optimum value ws,
the optimum value wk and the optimum value bopt(j) (j=1,
2, ..., m+m) in <C1:C2> are different from those in
<C1:C3>. Moreover, the normal sound and the abnormal
sound in Steps 1, 2, 4 and 5 shown in FIG. 49 may be normal
sound A and normal sound B. Therefore, the processing is
performed by replacing the normal sound and the abnormal
sound in FIG. 49 by normal sound A, normal sound B,
abnormal sound A, abnormal sound B, and the like.

In Step 1 of FIG. 52, an unknown input sound X is

recorded.

In Step 2, i=1 is set as an initial value.

In Step 3, j=1 is set as an initial value.

In Step 4, the processing moves to Step 6-1 when i=j, and
moves to Step 5 when i=j.

In <Ci:Cj> of Step 5, the processing of Steps 1, 2, 4 and
5 shown in FIG. 49 is performed to judge between
xECi and x&Cj. The processing moves to Step 6-1
when x€Ci is determined, and moves to Step 6-2 when
xECj is determined.

In Steps 6-1 and 7-1, the processing of Steps 4 and 5 is
repeated while increasing the value j to L with an
increment of 1.

In Steps 6-2 and 7-2, the processing of Steps 3 to 5 is
repeated while increasing the value i to L with an
increment of 1.
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In Step 8-1, since x&Ci is determined for every j (j=1 to
L, j=1) as a result of fixing Ci and comparing with Cj,
a final determination is made that the input sound x
belongs to category 1 (xECi).

In Step 8-2, since it is the case other than Step 8-1, a final
determination is made that the input sound x does not
belong to any of C1 to CL.

From the above, we can find that FIG. 52 is a generalized
flowchart with the number of categories set to L (however,
L=3), which is suitable for computer programming.

In Japanese vowel recognition in the voice recognition,
unknown input voices are recognized to belong to any of the
five categories, /a/, /i/, /u/, /e/ and /o/. In this case, it is
previously known that the number of categories is 5. Mean-
while, in inspection by hitting a concrete structure using a
hammer, a sound generated by hitting the concrete structure
using the hammer changes with the amount and depth of
reinforcement bars buried inside the concrete. Therefore, in
many cases, the number of categories of a normal sound is
2 or more. Moreover, a sound generated by hitting the
concrete structure using the hammer changes with the size
and depth of damage such as a cavity inside the concrete.
Therefore, in many cases, the number of categories of an
abnormal sound is 2 or more. For this reason, in this case,
there is no way of knowing beforehand how many categories
there are. Next, processing procedures for determining the
number of categories when the number of categories cannot
be known beforehand will be described.

In the first step, first, several spots having different
internal states are selected in a concrete structure, and one
category is assigned to each of the selected spots. Therefore,
the number of the selected spots is equal to the number of
categories. Then, several standard sounds (normal sounds or
abnormal sounds) are recorded by repeatedly hitting the
same spot and registered as the standard sounds belonging to
the respective categories. Next, for any two of the catego-
ries, the processing procedures shown in FIG. 48 are per-
formed to obtain the optimum value ws, the optimum value
wk and the optimum value bopt(j) =1, 2, . . . , m+m) and
calculate Welch’s test statistic T (equation 46) when these
optimum values are used. When the value of T is smaller
than an arbitrarily set threshold, the two categories are
determined to be the same and combined into one category.
On the other hand, when the value of T is not less than the
arbitrarily set threshold, the two categories are determined to
be different categories. The number of categories is reduced
by performing the above processing for all the combinations
of the categories assigned to the respective selected spots.

In the second step, an unknown input sound is recognized
through the processing procedures shown in FIG. 52 by
using the number of categories determined in the first step.
When a final determination is made, as a result of the
recognition, that “the input sound does not belong to any of
the categories determined in the first step”, a new category
is created and the input sound is set to be the standard sound
belonging to the new category. When a final determination
is made by continuing the same processing as the above that
“the input sound does not belong to any of the existing
categories”, a new category is created and the input sound is
set to be the standard sound belonging to the new category.
Therefore, the number of categories is increased by per-
forming the processing in the second step. However, in
FIGS. 37, 41, 48 and 49, since conditions of N1=2 and N2=2
are satisfied for N1 standard sounds belonging to category 1
and N2 standard sounds belonging to category 2, input
sounds are recorded by repeatedly hitting the same spot of
the concrete structure. Then, when a final determination is
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made that “all of (or at least one of) the input sounds do not
belong to any of the existing categories”, a new category is
created and the input sounds are set to be the standard
sounds belonging to the new category. Note that the pro-
cessing in the first step may be performed again at the right
time to combine the categories. In this way, the number of
categories can be determined by performing the processing
in the first and second steps.

Note that, in calculation of the geometric distance dA
according to the present invention, we can see from FIG. 43
that the dual and weighted standard pattern vector sogd can
be calculated in advance during the process of registering
standard patterns. Similarly, we can see from FIG. 47 that
the dual and selected standard pattern vector sogb can also
be calculated in advance during the process of registering
standard patterns. Therefore, in the case of calculating
geometric distance values dA between N standard patterns
and one input pattern, N values of dA are obtained by
performing one time the calculation of the dual and
weighted input pattern vector xogd and the dual and selected
input pattern vector xogb and N times the calculation of
cosine similarity, during the process of recognizing input
patterns, as shown in FIGS. 45 and 47. We can see from the
above that the amount of calculation for the geometric
distance dA is small in the process of recognizing the input
patterns. Moreover, as can be understood from FIG. 21, the
geometric distance dA according to the present invention is
a similarity scale that is not influenced by a method for
normalizing a power spectrum.

This is the end of the description of the method for
judging abnormality in a concrete structure by using a
detected value of a similarity between two original pattern
vectors.

Note that, in the above embodiment, the optimum values
of the skewness-weighting vector, kurtosis-weighting vector
and selecting vector are calculated using Welch® s test
statistic as the objective function. Instead, other statistics
such as a recognition rate may be used as the objective
function to calculate the optimum values of the skewness-
weighting vector, kurtosis-weighting vector and selecting
vector.

Note that, in the above embodiment, the optimum value
ws and the optimum value wk are first obtained, and then the
optimum value bopt(j) (=1, 2, . . . , m+m) is calculated.
Instead, only component positions of the standard and input
patterns corresponding to the component position where the
obtained value of the optimum value bopt(j) G=1, 2, . . .,
m+m) is 1 may be used to obtain the optimum value ws and
the optimum value wk again. In this case, the calculation of
the optimum value ws and the optimum value wk and the
calculation of the optimum value bopt (j) =1, 2, . . . , m+m)
may be repeated until the increase in the value of the
objective function saturates.

Note that, in the above embodiment, abnormality is
detected by calculating a geometric distance value for a
sound or an oscillation generated by hitting a concrete
structure using a hammer. Instead, abnormality may be
detected by calculating a geometric distance value for a
sound or an oscillation generated by hitting an anchor bolt
using a hammer.

Moreover, in the above embodiment, abnormality is
detected by calculating a geometric distance value between
the original standard pattern vector and the original input
pattern vector for a sound wave generated by hitting a
concrete structure using a hammer. Instead, voice recogni-
tion may be performed by calculating a geometric distance
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value between an original standard pattern vector and an
original input pattern vector for a sound wave of a voice
produced by a person.

Note that, in the above embodiment, the geometric dis-
tance between the original standard pattern vector and the
original input pattern vector is calculated by creating bar
graphs of the power spectrum of a sound or an oscillation
wave. However, in general, a geometric distance between
the original standard pattern vector and the original input
pattern vector can be calculated for any bar graphs and a
similarity between the bar graphs can be detected using the
calculated geometric distance value. Moreover, various
kinds of processing can be performed, such as analysis of the
bar graphs based on the detected value of the similarity.

REFERENCE SIGNS LIST

1 structure

2 microphone

3 band-pass filter

4 A/D converter

5 processor

The invention claimed is:

1. A method for judging abnormality in a structure,
comprising the steps of:

detecting an abnormal sound, comprising the steps of:

(a) creating an original standard pattern vector having
a feature quantity of a standard sound as a compo-
nent and an original input pattern vector having a
feature quantity of an input sound as a component;

(b) creating any reference shape having a variance that
varies from one specified component to another of
the original pattern vector, creating a reference pat-
tern vector having component values representing
the reference shape, and creating a skewness-weight-
ing vector having a rate of change in a skewness of
the reference pattern vector as a component;

(c) obtaining a length between a specified component
of the original standard pattern vector and each of
components thereof, calculating a component num-
ber of the skewness-weighting vector closest to a
position away from the center of the skewness-
weighting vector by the length, obtaining a product
of a component value of the component number of
the skewness-weighting vector and a component
value of each component of the original standard
pattern vector, and calculating a product-sum by
summing each product with respect to a component
number of the original standard pattern vector;

(d) obtaining, in the calculation of the product-sum, the
product-sum while moving the specified component
of'the original standard pattern vector to a position of
each component, and creating a skewness-weighted
standard pattern vector having the product-sum as a
component value of the specified component;

(e) obtaining a length between a specified component
of the original input pattern vector and each of
components thereof, calculating a component num-
ber of the skewness-weighting vector closest to a
position away from the center of the skewness-
weighting vector by the length, obtaining a product
of a component value of the component number of
the skewness-weighting vector and a component
value of each component of the original input pattern
vector, and calculating a product-sum by summing
each product with respect to a component number of
the original input pattern vector;
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(f) obtaining, in the calculation of the product-sum, the

product-sum while moving the specified component
of the original input pattern vector to a position of
each component, and creating a skewness-weighted
input pattern vector having the product-sum as a
component value of the specified component;

(g) setting an angle between the skewness-weighted

standard pattern vector and the skewness-weighted
input pattern vector as a skewness geometric dis-
tance between the original standard pattern vector
and the original input pattern vector;

(h) creating a skewness-weighting vector while chang-

ing the variance of the reference shape, obtaining a
difference in mean by subtracting a skewness geo-
metric distance mean between standard sounds of a
same category from a skewness geometric distance
mean between standard sounds of different catego-
ries, obtaining square root of a sum of values, one of
which is obtained by dividing a sample variance of
the skewness geometric distance between the stan-
dard sounds of the same category by a sample size
thereof, and the other of which is obtained by divid-
ing a sample variance of the skewness geometric
distance between the standard sounds of the different
categories by a sample size thereof, calculating a
Welch’s test statistic as an objective function by
dividing the difference in mean by the square root,
and creating an optimum skewness-weighting vector
that maximizes the objective function;

(1) creating a skewness-weighted standard pattern vec-

tor and a skewness-weighted input pattern vector by
use of the optimum skewness-weighting vector;

(j) creating any reference shape having a variance that

varies from one specified component to another of
the original pattern vector, creating a reference pat-
tern vector having component values representing
the reference shape, and creating a kurtosis-weight-
ing vector having a rate of change in a kurtosis off
the reference pattern vector as a component;

(k) obtaining a length between a specified component

of the original standard pattern vector and each of the
components thereof, calculating a component num-
ber of the kurtosis-weighting vector closest to a
position away from the center of the kurtosis-weight-
ing vector by the length, obtaining a product of a
component value of the component number of the
kurtosis-weighting vector and a component value of
each component of the original standard pattern
vector, and calculating a product-sum by summing
each product with respect to a component number of
the original standard pattern vector;

(1) obtaining, in the calculation of the product-sum, the

product-sum while moving the specified component
of'the original standard pattern vector to a position of
each component, and creating a kurtosis-weighted
standard pattern vector having the product-sum as a
component value of the specified component;

(m) obtaining a length between a specified original

input pattern vector and each of the components
thereof, calculating a component number of the
kurtosis-weighting vector closest to a position away
from the center of the kurtosis-weighting vector by
the length, obtaining a product of a component value
of the component number of the kurtosis-weighting
vector and a component value of each component of
the original input pattern vector, and calculating a
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product-sum by summing each product with respect
to a component number of the original input pattern
vector;

(n) obtaining, in the calculation of the product-sum, the
product-sum while moving the specified component
of the original input pattern vector to a position of
each component, and creating a kurtosis-weighted
input pattern vector having the product-sum as a
component value of the specified component;

(o) setting an angle between the kurtosis-weighted
standard pattern vector and the kurtosis-weighted
input pattern vector as a kurtosis geometric distance
between the original standard pattern vector and the
original input pattern vector;

(p) creating a kurtosis-weighting vector while changing
the variance of the reference shape, obtaining a
difference in mean by subtracting a kurtosis geomet-
ric distance mean between standard sounds of the
same category from a kurtosis geometric distance
mean between standard sounds of different catego-
ries, obtaining a square root of a sum of values, one
of which is obtained by dividing a sample variance
of the kurtosis geometric distance between the stan-
dard sounds of the same category by a sample size
thereof, and the other of which is obtained by divid-
ing a sample variance of the kurtosis geometric
distance between the standard sounds of the different
categories by a sample size thereof, calculating a
Welch’s test statistic as an objective function by
dividing the difference in mean by the square root,
and creating an optimum kurtosis-weighting vector
that maximizes the objective function;

(q) creating a kurtosis-weighted standard pattern vector
and a kurtosis-weighted input pattern vector by use
of the optimum kurtosis-weighting vector;

(r) normalizing magnitudes of the skewness-weighted
standard pattern vector and the kurtosis-weighted
standard pattern vector to 1, and combining the
normalized skewness-weighted standard pattern vec-
tor and the normalized kurtosis-weighted standard
pattern vector to create a dual and weighted standard
pattern vector,

(s) normalizing magnitudes of the skewness-weighted
input pattern vector and the kurtosis-weighted input
pattern vector to 1, and combining the normalized
skewness-weighted input pattern vector and the nor-
malized kurtosis-weighted input pattern vector to
create a dual and weighted input pattern vector;

(t) creating a selecting vector having the same number
of components as those of the dual and weighted
standard pattern vector and dual and weighted input
pattern vector and having O or 1 as a component,
obtaining a product of a component value of each
component of the dual and weighted standard pattern
vector and a component value of the corresponding
component of the selecting vector, the components
having the same component number, and obtaining a
product of a component value of each component of
the dual and weighted input pattern vector and a
component value of the corresponding component of
the selecting vector, the components having the same
component number, thereby creating a dual and
selected standard pattern vector and a dual and
selected input pattern vector having the correspond-
ing products as component values;

(u) setting an angle between the dual and selected
standard pattern vector and the dual and selected
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input pattern vector as a geometric distance between
the original standard pattern vector and the original
input pattern vector;

(v) obtaining a difference in mean by subtracting a
geometric distance mean between standard sounds of
the same category from a geometric distance mean
between standard sounds of different categories
while changing a value of each component of the
selecting vector to 0 or 1, obtaining a square root of
a sum of values, one of which is obtained by dividing
a sample variance of the geometric distance between
the standard sounds of the same category by a
sample site thereof, and the other of which is
obtained by dividing a sample variance of the geo-
metric distance between the standard sounds of the
different categories by a sample size thereof, calcu-
lating a Welch’s test statistic as an objective function
by dividing the difference in mean by the square root,
and creating an optimum selecting vector that maxi-
mizes the objective function;

(w) setting an angle between the dual and selected
standard pattern vector and the dual and selected
input pattern vector, which are created by use of the
optimum selecting vector, as the geometric distance
between the original standard pattern vector and the
original input pattern vector;

obtaining, by using the detected abnormal sound accord-

ing to steps (a)-(w), a first geometric distance between
an original standard pattern vector having a feature
quantity of a normal standard sound as a component
and an original input pattern vector having a feature
quantity of an unknown input sound as a component
and also obtaining a second geometric distance
between an original standard pattern vector having a
feature quantity of an abnormal standard sound as a
component and the original input pattern vector;

comparing the first geometric distance and the second

geometric distance; and

judging the input sound as normal when the first geomet-

ric distance is not more than the second geometric
distance and judging the input sound as abnormal when
the first geometric distance is greater than the second
geometric distance.

2. A method for recognizing a voice, comprising the steps
of:
detecting a similarity between oscillation waves, com-

prising the steps of:

(a) creating an original standard pattern vector having
a feature quantity of a standard oscillation wave as a
component and an original input pattern vector hav-
ing a feature quantity of an input oscillation wave as
a component;

(b) creating any reference shape having a variance that
varies from one specified component to another of
the original pattern vector, creating a reference pat-
tern vector having component values representing
the reference shape, and creating a skewness-weight-
ing vector having a rate of change in a skewness of
the reference pattern vector as a component;

(c) obtaining a length between a specified component
of the original standard pattern vector and each of
components thereof, calculating a component num-
ber of the skewness-weighting vector closest to a
position away from the center of the skewness-
weighting vector by the length, obtaining a product
of a component value of the component number of
the skewness-weighting vector and a component
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value or each component of the original standard
pattern vector, and calculating a product-sum by
summing each product with respect to a component
number of the original standard pattern vector;

(d) obtaining, in the calculation of the product-sum, the
product-sum while moving the specified component
of'the original standard pattern vector to a position of
each component, and creating a skewness-weighted
standard pattern vector having the product-sum as a
component value of the specified component;

(e) obtaining a length between a specified component
of the original input pattern vector and each of
components thereof, calculating a component num-
ber of the skewness-weighting vector closest to a
position away from the center of the skewness-
weighting vector by the length, obtaining a product
of a component value or the component number of
the skewness-weighting vector and a component
value of each component of the original input pattern
vector, and calculating a product-sum by summing
each product with respect to a component number of
the original input pattern vector;

(f) obtaining, in the calculation or the product-sum, the
product-sum while moving the specified component
of the original input pattern vector to a position of
each component, and creating a skewness-weighted
input pattern vector having the product-sum as a
component value of the specified component;

(g) setting an angle between the skewness-weighted
standard pattern vector and the skewness-weighted
input pattern vector as a skewness geometric dis-
tance between the original standard pattern vector
and the original input pattern vector;

(h) creating a skewness-weighting vector while chang-
ing the variance of the reference shape, obtaining a
difference in mean by subtracting a skewness geo-
metric distance mean between standard oscillation
waves of a same category from a skewness geomet-
ric distance mean between standard oscillation
waves of different categories, obtaining a square root
of a sum of values, one of which is obtained by
dividing a sample variance of the skewness geomet-
ric distance between the standard oscillation waves
of the same category by a sample size thereof, and
the other of which is obtained by dividing a sample
variance of the skewness geometric distance
between the standard oscillation waves of the differ-
ent categories by a sample size thereof, calculating a
Welch’s test statistic as an objective function by
dividing the difference in mean by the square root,
and creating an optimum skewness-weighting vector
that maximizes the objective function;

(1) creating a skewness-weighted standard pattern vec-
tor and a skewness-weighted input pattern vector by
use of the optimum skewness-weighting vector;

(j) creating any reference shape having a variance that
varies from one specified component to another of
the original pattern vector, creating a reference pat-
tern vector having component values representing
the reference shape, and creating a kurtosis-weight-
ing vector having a rate of change in a kurtosis of the
reference pattern vector as a component;

(k) obtaining a length between a specified component
of'the original standard pattern vector and each of the
components thereof, calculating a component num-
ber of the kurtosis-weighting vector closest to a
position away from the center of the kurtosis-weight-
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ing vector by the length, obtaining a product of a
component Value of the component number of the
kurtosis-weighting vector and a component value of
each component of the original standard pattern
vector, and calculating product-sum by summing
each product with respect to a component number of
the original standard pattern vector;

(1) obtaining, in the calculation of the product-sum, the

product-sum while moving the specified component
of'the original standard pattern vector to a position of
each component, and creating a kurtosis-weighted
standard pattern vector haying the product-sum as a
component value of the specified component;

(m) obtaining a length between a specified component

of the original input pattern vector and each of the
components thereof, calculating a component num-
ber of the kurtosis-weighting vector closest to a
position away from the center of the kurtosis weight-
ing vector by the length, obtaining a product of a
component value of the component number of the
kurtosis-weighting vector and a component value of
each component of the original input pattern vector,
and calculating a product-sum by summing each
product with respect to a component number of the
original input pattern vector;

(n) obtaining, in the calculation of the product-sum, the

product-sum while moving the specified component
of the original input pattern vector to a position of
each component, and creating a kurtosis-weighted
input pattern vector having the product-sum as a
component value of the specified component;

(o) setting an angle between the kurtosis-weighted

standard pattern vector and the kurtosis-weighted
input pattern vector as a kurtosis geometric distance
between the original standard pattern vector and the
original input pattern vector;

(p) creating a kurtosis-weighting vector while changing

the variance of the reference shape, obtaining a
difference in mean by subtracting a kurtosis geomet-
ric distance mean between standard oscillation
waves of the same category from a kurtosis geomet-
ric distance mean between standard oscillation
waves of different categories, obtaining a square root
of a sum of values, one of which is obtained by
dividing a sample variance of the kurtosis geometric
distance between the standard oscillation waves of
the same category by a sample size thereof, and the
other of which is obtained by dividing a sample
variance of the kurtosis geometric distance between
the standard oscillation waves of the different cat-
egories by a sample size thereof, calculating a
Welch’s test statistic as an objective function by
dividing the difference in mean by the square root,
and creating an optimum kurtosis-weighting vector
that maximizes the objective function;

(q) creating a kurtosis-weighted standard pattern vector

and a kurtosis-weighted input pattern vector by use
of the optimum kurtosis-weighting vector;

(r) normalizing magnitudes of the skewness-weighted

standard pattern vector and the kurtosis-weighted
standard pattern vector to 1, and combining the
normalized skewness-weighted standard pattern vec-
tor and the normalized kurtosis-weighted standard
pattern vector to create a dual and weighted standard
pattern vector,

(s) normalizing magnitudes of the skewness-weighted

input pattern vector and the kurtosis-weighted input
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pattern vector to 1, and combining the normalized
skewness-weighted input pattern Vector and the nor-
malized kurtosis-weighted input pattern vector to
create a dual and weighted input pattern vector;

(t) creating a selecting vector having the same number
of components as those of the dual and weighted
standard pattern vector and dual and weighted input
pattern vector and having O or 1 as a component,
obtaining a product of a component value of each
component of the dual and weighted standard pattern
vector and a component value of the corresponding
component of the selecting vector, the components
having the same component number, and obtaining a
product of a component value of each component of
the dual and weighted input pattern vector and a
component value of the corresponding component of
the selecting vector, the components having the same
component number, thereby creating a dual and
selected standard pattern vector and a dual and
selected input pattern vector having the correspond-
ing products as component values;

(u) setting an angle between the dual and selected
standard pattern vector and the dual and selected
input pattern vector as a geometric distance between
the original standard pattern vector and the original
input pattern vector;

(v) obtaining a difference in mean by subtracting a
geometric distance mean between standard sounds of
the same category from a geometric distance mean
between standard sounds of different categories
while changing a value of each component of the
selecting vector to 0 or 1, obtaining a square root of
a sum of values, one of which is obtained by dividing
a sample variance of the geometric distance between
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the standard sounds of the same category by a
sample size thereof, and the other of which is
obtained by dividing a sample variance of the geo-
metric distance between the standard sounds of the
different categories by a sample size thereof, calcu-
lating a Welch’s test statistic as an objective function
by dividing the difference in mean by the square root,
and creating an optimum selecting vector that maxi-
mizes the objective function;

(w) setting an angle between the dual and selected
standard pattern vector and the dual and selected
input pattern vector, which are created by use of the
optimum selecting vector, as the geometric distance
between the original standard pattern vector and the
original input pattern vector;

obtaining, by using the detected similarity between oscil-

lation waves according to steps (a)-(w), a first geomet-
ric distance between an original standard pattern vector
having a feature quantity of a standard voice of cat-
egory 1 as a component and an original input pattern
vector having a feature quantity of an unknown input
voice as a component and also obtaining a second
geometric distance between an original standard pat-
tern vector having a feature quantity of a standard voice
of category 2 as a component and the original input
pattern vector,

comparing the first geometric distance and the second

geometric distance; and

judging that the input voice belongs to category 1 when

the first geometric distance is not more than the second
geometric distance and judging that the input voice
belongs to category 2 when the first geometric distance
is greater than the second geometric distance.
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