
Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering 
ug. 21-23, 2010, Beijing, China 

 
 
 
 
 

 

Recognition of Abnormal Vibrational Responses of Signposts 
using the Two-dimensional Geometric Distance and Wilcoxon Test 

 
                                            Michihiro JINNAI 

 Kagawa National College 

Takamatsu, Kagawa, Japan 

 jinnai@t.kagawa-nct.ac.jp 

                                           Yukio AKASHI 

                                      Nexco Engineering Ltd. 

                 Takamatsu, Kagawa, Japan 

yukio.akashi@w-e-shikoku.co.jp 

                                          Shinsuke NAKAYA 

               Nexco Engineering Ltd. 

        Takamatsu, Kagawa, Japan 

shinsuke.nakaya@w-e-shikoku.co.jp

 

       Fuji REN 

                                                          University of Tokushima 

   Tokushima, Tokushima, Japan 

                                    ren@is.tokushima-u.ac.jp 

 
Abstract: 

In expressway companies, workers have been impact- 
ing signposts using wooden hammers and estimating the 
degree of the corrosion by listening to the sound.  In order 
to automate this, we have been developing software that 
recognizes an abnormal impact vibrational response due to 
corrosion.  This software extracts sonograms from impact 
vibrational waves using the LPC spectrum analysis, and 
matches images of the sonogram between a standard and 
an input impact vibrations using the Two-dimensional 
Geometric Distance.  Then, the software distinguishes the 
abnormality of the input impact vibration using Wilcoxon 
rank-sum test.  We have measured the impact vibrations 
of five normal signposts and five abnormal signposts, and 
carried out the automatic recognition experiments.  As a 
result, the software has recognized correctly in all cases. 
We have verified the effectiveness of the proposed method. 
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1. Introduction 

On expressways, signposts have broken owing to 
corrosion and have fallen from elevated roads. Accidents 
have happened.  In expressway companies, in order to 
prevent these accidents, workers have been impacting 
signposts using wooden hammers and estimating the 
degree of the corrosion by listening to the sound.  The 
skilled workers must be used to interpret the impact 
sound of the signpost.  As an improvement, we have 
been developing software for detecting abnormal impact 
vibrations of signposts so that non-skilled workers can 
inspect the signposts.  This software extracts sonograms 
from the impact vibrational waves using the LPC 
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spectrum analysis, and matches images of the sonogram 
between a standard and an input impact vibrations using 
a similarity scale.  Then, the software distinguishes the 
abnormality of the input impact vibration using 
Wilcoxon rank-sum test of a statistical analysis. 

The similarity scale works as follows, if a human 
would recognize two patterns as similar to each other, 
the computer software outputs a small value, and if a 
human would recognize the two patterns as dissimilar, 
then the computer software outputs a large value.  In 
conventional pattern matching, the similarity scales 
known as the Euclidean distance and cosine similarity 
have been widely used to measure likeness [1],[2].  
Conventional similarity scales compare the patterns 
using one-to-one mapping.  The result of the one-to-one 
mapping is that the distance metric is highly sensitive to 
noise, and the distance metric changes in a staircase 
pattern when a difference occurs between peaks of the 
standard and input patterns.  To improve these short- 
comings, various similarity scales have been proposed 
for comparing two patterns in speech recognition [2-10], 
pattern classification [11] and image retrieval [12-15]. 

In our previous paper [16], a new similarity scale 
called the Geometric Distance was proposed.  At that 
point, we initially developed a mathematical model for 
the similarity scale.  In order to realize the mathema- 
tical model, an algorithm based on one-to-many point 
mapping was proposed.  In this research, the algorithm 
is expanded to the “Two-dimensional Geometric Dis- 
tance (2-d GD)”.  Using the 2-d GD instead of the 
conventional similarity scales, we have been developing 
the software for detecting abnormal impact vibrational 
responses of signposts.  In this paper, we introduce the 
principles of the 2-d GD, and describe the automatic 
inspection software for the signpost using the LPC 
spectrum, the 2-d GD and Wilcoxon test. 
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Figure 1.  Sonograms of impact vibrational response of signpost 

2. The sonogram of impact vibrational response of 
signpost 

Figure 1 shows the sonograms (time-frequency- 
power).  These sonograms are extracted from the 
impact vibrational responses measured by a sensor.  
Where, we set the vibration sensor on an upper position, 
an intermediate position and a bottom of the signpost, 
and impact on the opposite side of the sensor using 
wooden hammer, respectively.  Since the signposts are 
eroded at the bottom in many cases owing to puddles of 
rainwater, we assume that the signpost has the abnor- 
mality at the bottom in this experiment as shown in 
Figure 1.  These sonograms have been calculated using 
the method of Linear Predictive Coefficient (LPC).  We 
have set the analysis conditions of the vibrational wave 
with the 51.2kHz sampling frequency, 16bit quantization, 
3.93msec frame width, 0.098msec frame period, 151 
total frames, 10 order of LPC, 1Hz to 12000Hz 
frequency range, 46.9Hz frequency resolution, and 
–40dB to 0dB logarithmic power spectrum.  In this 
research, in order to avoid the initial impulse response of 
the waveform, the sonogram is extracted from only the 
natural vibrational wave of the signpost.  Therefore, if 
we assume 0msec at the time of impact, the sonogram is 
extracted from the vibrational wave in the range of 
0.79msec to 18.67msec. 

From the upper and middle sonograms shown in 
Figure 1, it is evident that the peak frequencies are 
2579Hz and 2532Hz respectively and the two patterns 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

are similar to each other.  On the other hand, from the 
lower sonogram shown in Figure 1, it is evident that the 
peak frequency is 6516Hz and the pattern is different 
from the other two.  Moreover, as a result of comparing 
these three impact sounds aurally, we have confirmed 
that the sounds of the upper and middle sonograms are 
similar to each other and the sound of the lower 
sonogram is different from the other two. 

3. The similarity scale and its robustness 

In sound recognition, a known sonogram stored in a 
PC memory is called here the “standard pattern”, and a 
comparison sonogram is called “input pattern”.  The 
degree of likeness between the standard pattern and the 
input pattern is evaluated using a similarity scale.  If the 
similarity of the standard and input patterns is close, then 
those two patterns are considered to be in the same 
category and the input pattern is recognized and 
classified.  The similarity is often measured as a 
“distance” between the two patterns.  Conventionally, 
the similarity scales known as the Euclidean distance and 
cosine similarity have been widely used.  Section 3.1 
describes the shortcomings that are found in the 
conventional similarity scales.  Furthermore, Sections 
3.2 and 3.3 describe new similarity scales called the 
“One-dimensional Geometric Distance (1-d GD)” and 
the “Two-dimensional Geometric Distance (2-d GD)” 
that have been developed by us for improving the 
shortcomings. 
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3.1.  Euclidean distance and cosine similarity – 
Conventional similarity scales 

Conventional similarity scales Euclidean distance 
and cosine similarity compare the patterns using 
one-to-one mapping.  The result of the one-to-one 
mapping is that input patterns with different shapes may 
have the same distance from the standard pattern when 
the sonograms have the “difference” and “wobble”. 

The upper diagram of Figure 2 shows an example of 
the “difference” where the standard pattern has two 
peaks in the sonogram, and input patterns 1, 2, and 3 
have a different position on the first peak.  Note that the 
standard and input patterns have the same volume.  As 
shown in the bar graph at the bottom left of Figure 2, the 
Euclidean distances and cosine similarities e1, e2, and e3 
have the relationship of e1=e2=e3 between the standard 
pattern and each of input patterns 1, 2, and 3.  There- 
fore, input patterns 1, 2, and 3 cannot be distinguished. 

The upper diagram of Figure 3 shows an example 
of the “wobble” where the standard pattern has a flat 
sonogram, input patterns 4 and 5 have the “wobble” on 
the flat sonogram, and input pattern 6 has a single peak.  
However, each pattern is assumed to have variable α in 
the relationship shown in Figure 3.  Therefore, the 
standard and input patterns always have the same 
volume.  As shown in the bar graph at the bottom left of 
Figure 3, the Euclidean distances and cosine similarities 
e4, e5, and e6 have the relationship of e4=e5=e6 between 
the standard pattern and each of input patterns 4, 5, and 6.  
Therefore, input patterns 4, 5, and 6 cannot be distin- 
guished. 

3.2.  One-dimensional Geometric Distance 

As an improvement, we have developed a new 
similarity scale called the Geometric Distance [16].  A 
similarity scale is a concept that should intuitively 
concur with the human concept of similarity in hearing 
and sight.  First we need to develop a mathematical 
model for the similarity scale so that we can perform 
numerical processing by computation.  In the Geome- 
tric Distance, a mathematical model of the similarity 
scale is proposed to improve the shortcomings that are 
found in the Euclidean distance, cosine similarity and 
others.  A mathematical model incorporating the 
following two characteristics is used. 
< 1 > The distance metric must show good immunity to 
noise. 
< 2 > The distance metric must increase monotonically 
when a difference increases between peaks of the 
standard and input patterns. 

The bar graphs at the bottom right of Figures 2 and 
3 express the mathematical model by figures.  Follow- 
ing on from above, a new algorithm based on 
one-to-many point mapping is proposed to realize the 

mathematical model.  This section describes the 1-d GD 
algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Typical example of “difference” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Typical example of “wobble” 
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Figure 4.  Shape changes of reference patterns 

Figures 4(a)-(e) respectively show typical examples 
of the standard and input patterns that have been created 
using the momentary power spectrum (frequency-power) 
of standard and input sounds.  Note that the power 
spectrum is generated from the output of filter bank with 
the m frequency bands.  The i-th power spectrum values 
(where, i = 1, 2, … , m) are divided by their total energy, 
so that normalized power spectra si and xi have been 
calculated.  At this moment, the standard and input 
patterns have the same area size.  Moreover, Figures 
4(a)-(e) respectively show reference patterns that have 
the initial shape ri of a normal distribution. 

With the 1-d GD algorithm, a difference in shapes 
between standard and input patterns is replaced by the 
shape change of the reference pattern using the following 
equation. 
 

(1) 
 
Next, we explain Eq. (1) using Figure 4. 
●Figure 4(a) gives an example of the case where 
standard pattern and input pattern have the same shape.  
Because values ri of Eq. (1) do not change during this 
time, the reference pattern shown in Figure 4(a) does not 
change in the shape from the normal distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

●Figures 4(b)-(d) respectively show examples exhibiting 
a small, medium, and large “difference” of peaks 
between the standard and input patterns.  If Eq. (1) is 
represented by the shapes, as shown in Figures 4(b)-(d), 
value ri decreases at peak position i of each standard 
pattern.  At the same time, value ri increases at peak 
position i of each input pattern. 
●Figure 4(e) typically shows the standard pattern having 
a flat shape and the input pattern where a “wobble” 
occurs in the flat shape.  Because values ri increase and 
decrease alternatively in Eq. (1) during this time, the 
reference pattern shown in Figure 4(e) has a small shape 
change from the normal distribution. 

For the reference pattern whose shape has changed 
by Eq. (1), the magnitude of shape change is numerically 
evaluated as the variable of moment ratio.  The moment 
ratio of the reference pattern can be calculated using the 
following equation. 
 
 
 

(2) 
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Where, Li (i = 1, 2, … , m) is a deviation from the center 
axis of the normal distribution as shown in the reference 
pattern of Figure 4(a).  The moment ratio A is derived 
from the kurtosis from a statistical analysis.  If the 
shape of the reference pattern follows the normal distri- 
bution, then A = 0.  If it has peakedness relative to the 
normal distribution, then A > 0.  Alternatively, if it has 
flatness relative to the normal distribution, then A < 0.  
Figures 4(a)-(e) show how A varies with ri. 
●In Figure 4(a), the values ri do not change.  The 
moment ratio becomes A = 0. 
●In Figure 4(b), the position i of the decreased ri  and 
that of the increased ri are close.  Because the effect of 
an increase and a decrease is canceled out, the moment 
ratio becomes A ≈ 0. 
●In Figure 4(d), because the shape of reference pattern 
has flatness relative to the normal distribution, the 
moment ratio becomes A <<  0. 

●In Figure 4(c), because the shape of the reference 
pattern is an intermediate state between (b) and (d), the 
moment ratio becomes A < 0. 
●In Figure 4(e), the reference pattern has small shape 
change from the normal distribution, and the moment 
ratio becomes A ≈ 0. 
From Figures 4(a)-(d), we can understand that value | A | 
increases monotonically according to the increase of the 
“difference” between peaks of the standard and input 
patterns.  Also, from Figure 4(e), it is clear that A ≈ 0 
for the “wobble”. 

As shown in Figure 4, we have determined the 
moment ratio A by assuming that the center axis of the 
normal distribution locates at the center of standard and 
input patterns.  Next, as shown in Figure 5, we 
determine the amount of moment ratio Aj for each j in 
the case where the center axis of the normal distribution 
moves to any component position j (where, j = 1, 2, … , 
m) of the standard and input patterns.  Using the m parts 
of the moment ratios Aj that we have obtained in Figure 
5, we can calculate the difference in shapes between 
standard and input patterns by the following equation 
and we define it as the “One-dimensional Geometric 
distance d ”. 
 
 

(3) 
 
 
In this method, when a “difference” occurs between 
peaks of the standard and input patterns with a “wobble” 
due to noise or other non-linearity, the “wobble” is 
absorbed and the distance metric increases monoto- 
nically according to the increase of the “difference”.  
From the above description, we could verify that the 1-d 
GD algorithm matches the characteristics < 1 > and < 2 > 
of the mathematical model.  In the actual 1-d GD 

algorithm, we create a pair of reference patterns that 
have the initial shape of the normal distribution, because 
Eq. (2) cannot be defined if the value ri is negative [16]. 

3.3.  Two-dimensional Geometric Distance –    
New similarity scale 

The 1-d GD algorithm is expanded to the 2-d GD 
algorithm.  Figures 6 and 7 respectively show stylized 
examples of the standard and input patterns that have 
been created using the sonogram (time-frequency-power) 
of standard and input sounds.  The (i1, i2)-th power 
spectrum values (where, time axis i1 = 1, 2, … , m1; 
frequency axis i2 = 1, 2, … , m2) are divided by their 
total energy, so that normalized power spectra si1i2 and 
xi1i2 have been calculated.  At this moment, the standard 
and input patterns have the same volume size.  
Moreover, Figures 6 and 7 respectively show reference 
patterns that have the initial shape ri1i2 of a two- 
dimensional normal distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Movement of reference pattern 
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Figure 6 shows an example exhibiting a 
“difference” of peaks between the standard and input 
patterns.  Figure 7 shows the standard pattern having a 
flat shape and the input pattern where a “wobble” occurs 
in the flat shape.  We suppose that the standard and 
input patterns have the same volume.  With the 2-d GD 
algorithm, a difference in shapes between standard and 
input patterns is replaced by the shape change of the 
reference pattern using the following equation 
 
 

(4) 
 
 
In Figure 6, the value of the reference pattern decreases 
at peak position of the standard pattern.  At the same 
time, the value of the reference pattern increases at peak 
position of the input pattern.  In Figure 7, because the 
values of the reference pattern increase and decrease 
alternatively, the reference pattern has a small shape 
change from the two-dimensional normal distribution. 

For the reference pattern whose shape has changed 
by Eq. (4), the magnitude of shape change is numerically 
evaluated as the variable of moment ratio using the 
following equation. 
 
 
 
 

(5) 
 
 
 
 
 
However, the deviation Li shown in Figure 4(a) and Eq. 
(2) is replaced by a deviation Li1i2 shown in Figure 6. 

Next, as shown in Figure 8, we determine the 
amount of moment ratio Aj1 j2 for each (j1, j2) in the case 
where the center axis of the two-dimensional normal 
distribution moves to various positions (j1, j2) relative to 
the standard and input patterns.  Using these moment 
ratios Aj1 j2, we can calculate the difference in shapes 
between standard and input patterns by the following 
equation and we define it as the “Two-dimensional 
Geometric Distance d ”. 
 
 

(6) 
 

 
Also, we can verify that the 2-d GD algorithm matches 
the characteristics < 1 > and < 2 > of the mathematical 
model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  Shape change of reference pattern (difference) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Shape change of reference pattern (wobble) 

 



IEEE           NLP-KE 2010                                                          Aug. 21-23, 2010, Beijing, China 
 
 
 
 
 
 

 
Figure 8.  Movement of reference pattern 

4. Recognition of abnormal impact vibrational 
responses 

In our system, we impact the signpost 5 times on 
each position shown in Figure 1 using wooden hammer 
and measure the vibrational waves.  Then, the 5x3 
pieces of the sonograms are extracted from each 
vibrational waveform.  As shown in Figure 1, we 
calculate the value dum of the 2-d GD between the 
sonogram obtained on the upper position and the 
sonogram obtained on the intermediate position.  The 
value dum expresses the difference in shapes between the 
sonograms of the normal part of signpost. 

The 5x5 pieces of the values dum are calculated for 
each combination of the 5 sonograms obtained on the 
upper position and the 5 sonograms obtained on the 
intermediate position.  We represent them as “sample 
1”.  Similarly, the 5x5 pieces of the values dml are 
calculated for the intermediate position and the bottom 
of the signpost.  We represent them as “sample 2”.  
Figure 9 shows an example of distributions of samples 1 
and 2.  If the signpost is eroded at the bottom as shown 
in Figure 1, then the values dml are large.  Therefore, the 
distribution of sample 2 is greater than that of sample 1 
as shown in Figure 9. 

We perform Wilcoxon rank-sum test with the 
following processing procedure to detect the difference 
between samples 1 and 2 automatically. 
 
(Step 1) Null hypothesis H0 : The distributions of sam- 
ples 1 and 2 are the same. 
   Alternative hypothesis H1 : The distribution of sam- 
ple 2 is greater than that of sample 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Step 2) We calculate a statistic W of Wilcoxon rank-sum 
test. 
 
(Step 3) If the statistic W is in the critical region with a 
significant level of 10%, then we reject the hypothesis 
H0 and determine that the signpost is eroded at the 
bottom. 

We have measured the impact vibrations of the five 
normal signposts and the five abnormal signposts eroded 
at the bottom, and performed Wilcoxon test.  As the 
result of the experiments, the software has recognized 
correctly in all cases.  We have verified the effective- 
ness of the proposed method. 

5. Conclusions and future work 

We have proposed a new method for detecting the 
abnormal impact vibrational responses of the signposts.  
The software extracts the sonogram from the impact 
vibrational wave using the LPC spectrum analysis, and 
matches the images of the sonogram between a standard 
and an input impact vibrations using the 2-d GD.  Then, 
the software distinguishes the abnormality of the input 
impact vibration using Wilcoxon test.  As the result of 
the recognition experiments, we have verified the 
effectiveness of the proposed method. 

Finally, we describe future work.  We will con- 
tinue the recognition experiments using the signposts 
with various types of corrosions and will verify the 
effectiveness of the proposed method.  Furthermore, we 
will develop mobile devices for estimating the degree of 
the corrosion so that non-skilled workers can inspect the 
signposts on expressways. 
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Figure 9.  Distributions of two-dimensional geometric distances 
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